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Abstract

In this article, we use weighted sharing values to investi-
gate the uniqueness theorems for meromorphic functions of
specific types of q-shift difference polynomials of zero order.
The results in this article extend and improve certain previous
results due to [10]
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1 Introduction and Main Results

Nevanlinna theory is a field of complex analysis that studies the value distri-
bution of meromorphic functions. It was established by Rolf Nevanlinna in
the early twentieth century, and Nevanlinna theory is a useful framework for
investigating the value distribution of meromorphic functions, providing sig-
nificant insights into their genesis and behavior. Nevanlinna theory provides
a thorough and rigorous framework for comprehending the complex behavior
of meromorphic functions, making it a key field of study in complex analysis.

For the elementary definitions and standard notations of the Nevanlinna

value distribution theory such as T (r, f), N(r, f), N
(
r, 1

f

)
, m(r, f) etc see

Hayman [6]. The uniqueness theory of meromorphic functions focuses on the
criteria that allow for the existence of essentially only one function that meets
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these conditions. It demonstrated that any non-constant meromorphic func-
tion may be uniquely defined by five values, i.e., if two non-constant meromor-
phic functions f and g take the same five values at the same locations, then
f ≡ g.

Let f and g be two non-constant meromorphic functions defined in the
open complex plane.The Nevanlinna characteristic function of a meromorphic
function f plays a very important role in the value distribution theory and it
is denoted by T (r, f) and S(r, f) is any quantity satisfying S(r, f) = o(T (r, f)
where r → ∞ ∈ R+\E, where measure of E is finite. We have T (r, f) =
m(r, f) +N(r, f), which clearly shows that T (r, f) is non-negative. If f(z)−a
and g(z)− a assumes the same zeros with the same multiplicities, then we say
that f(z) and g(z) share the value a CM (Counting Multiplicity) and we have
E(a, f) = E(a, g). Suppose, if f(z) − a and g(z) − a assumes the same zeros
ignoring the multiplicities, then we say that f(z) and g(z) share the value a
IM (Ignoring Multiplicity) and we will have E(a, f) = E(a, g). We denote
by Ek)(a, f) the set of all a- points of f with multiplicities not exceeding k,
where an a- point is counted according to its multiplicity. Also we denote by
Ek)(a, f) the set of distinct a- points of f with multiplicities not greater than
k.

Definition 1.1 [8] Let f and g share the value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.
Clearly, N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g),
where NL(r, a; f) denotes the counting function of those 1-points of f and g,
when two meromorphic functions f and g share the value 1 IM and z0 is a
1-point of f of order p, and a 1-point of g of order q, such that q < p.

Definition 1.2 [7] For a complex number a ∈ C ∪ {∞}, we denote by
Ek(a, f) the set of all a-points of f where an a-point with multiplicity m is
counted m times if m ≤ k and k + 1 times if m > k. For a complex number
a ∈ C ∪ {∞}, such that Ek(a, f) = Ek(a, g), then we say that f and g share
the value a with weight k.

The definition implies that if f, g share the value a with weight k, then z0
is a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a
with multiplicity m(≤ k) and z0 is a zero of f − a with multiplicity m(> k)
if and only if it is a zero of g − a with multiplicity n(> k), where m is not
necessarily equal to n. We write f, g share (a, k) to mean that f, g share the
value a with wieght k. Clearly if f, g share (a, k) then f, g share (a, p) for all
integers p, 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and
only if f, g share (a, 0) or (a,∞) respectively.

In 1996, R. Bruck [2] posed the following conjecture.
Conjecture.[2] Let f be a non-constant entire function. Suppose that ρ1(f)
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is not positive integer or infinite, if f and f
′

share one finite value a CM, then

f
′ − a
f − a

= c, (1)

for some non-zero constant c, where ρ1(f) is the first iterated order of f which
is defined by

ρ1(f) = limsupr→∞
loglogT (r, f)

logr
. (2)

In 1998, Gundersen and Yang [5] proved that the conjecture is true if f
is of finite order and in 1999, Yang [14] generalized their result to the kth

derivatives. In 2004, Chen and Shon [4] proved that the conjecture is true for
entire functions of first iterated order ρ1(f) < 1

2
.

In 2008, Yang and Zhang [15] considered the uniqueness problems on mero-
morphic function fn sharing value with its first derivative. One of their results
can be stated as follows.
Theorem A.[15] Let f(z) be a non-constant meromorphic function and n ≥ 12
be an integer. Let F = fn. If F and F

′
share 1 CM, then F = F

′
, and f

assumes the form f(z) = ce
1
n
z.

The difference Nevanlinna theory and its application to the uniqueness the-
ory have recently increased interest among researchers.

In 2012, Chen, Chen and Li obtained following results.

Theorem B.[3] Let f(z) be a non-constant meromorphic functionof finite or-
der and n ≥ 9 be an integer. Let F (z) = f(z)n. If F (z) and ∆cF share (1,∞)
CM, then F (z) = ∆cF .

In 2019, Meng and Li[11] proved the following results.

Theorem C.[11] Let f(z) and g(z) be two non-constant meromorphic func-
tions and let n, d, k be positive integers with n > 2k + 3k+9

d
, d ≥ 2, and

S = {a ∈ C : ad = 1}. If E(fn)(k)(S, 1) = E(gn)(k)(S, 1), then one of the
following two cases holds:

1. f(z) = c1e
cz, g(z) = c2e

−cz for three non-zero constants c1, c2 and c such
that (−1)kd(c1c2)

nd(nc)2kd = 1;

2. f = tg with tnd = 1, t ∈ C.

Theorem D.[11] Let f(z) and g(z) be two non-constant meromorphic func-
tions and let n, d, k be positive integers with n > 2k + 8k+14

d
, d ≥ 2 and

S = {a ∈ C : ad = 1}. If E(fn)(k)(S, 0) = E(gn)(k)(S, 0), then one of the
following two cases holds:
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1. f(z) = c1e
cz, g(z) = c2e

−cz for three non-zero constants c1, c2 and c such
that (−1)kd(c1c2)

nd(nc)2kd = 1;

2. f = tg with tnd = 1, t ∈ C.

In 2019, Meng and Liu [10] obtained the following results by considering
q-shift f(qz + c) by replacing F

′
.

Theorem E.[10] Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, η ∈ C and n is an integer
satisfying n ≥ 7. If fn(z) and fn(qz+ η) share (1, 2), f(z) and f(qz+ η) share
(∞,∞), then f(z) = tf(qz + η), where t is a constant and tn = 1.

Corollary 1.3 [10] Let f be a non-constant entire function of zero-order.
Suppose that q is a non-zero complex constant, η ∈ C and n is an integer
satisfying n ≥ 5. If fn(z) and fn(qz + η) share (1, 2), then f(z) = tf(qz + η),
where t is a constant and tn = 1.

Theorem F.[10] Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, η ∈ C and n is an integer sat-
isfying n ≥ 8. If fn(z) and fn(qz + η) share (1, 2), f(z) and f(qz + η) share
(∞, 0), then f(z) = tf(qz + η), where t is a constant and tn = 1.

Theorem G.[10] Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, η ∈ C and n is an integer
satisfying n ≥ 7. If f(z) and f(qz + η) share (∞,∞) and E3)(1, f

n(z)) =
E3)(1, f

n(qz + η)) then f(z) = tf(qz + η), where t is a constant and tn = 1.

Theorem H.[10] Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, η ∈ C and n is an integer
satisfying n ≥ 8. If f(z) and f(qz + η) share (∞, 0) and E3)(1, f

n(z)) =
E3)(1, f

n(qz + η)) then f(z) = tf(qz + η), where t is a constant and tn = 1.

Here, we used the idea of weighted sharing values to extend the above
results.
Where P (z) = anz

n+an−1z
n−1+ ...+a1z+a0 be a non-zero polynomial, where

a0, a1, ..., an(6= 0) are complex constants and m be the number of distinct zeros
of P (z).
Now, it will be interesting to study what happens to Theorems E - H when we
consider a more generalized q- shift form fn(z)P (f(z)) and fn(qz+c)P (f(qz+
c)) and obtained the following results.

Theorem 1.4 Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, c ∈ C and n is an integer
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satisfying n ≥ m+ 6. If fn(z)P (f(z)) and fn(qz+ c)P (f(qz+ c)) share (1, 2),
fn(z)P (f(z)) and fn(qz+ c)P (f(qz+ c)) share (∞,∞), then fn(z)P (f(z)) ≡
fn(qz + c)P (f(qz + c)).

Corollary 1.5 Let f be a non-constant entire function of zero-order. Sup-
pose that q is a non-zero complex constant, c ∈ C and n is an integer satisfying
n ≥ m+ 4. If fn(z)P (f(z)) and fn(qz + c)P (f(qz + c)) share (1, 2), then the
conclusion of Theorem 1.4 holds.

Theorem 1.6 Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, c ∈ C and n is an integer
satisfying n ≥ m+ 7. If fn(z)P (f(z)) and fn(qz+ c)P (f(qz+ c)) share (1, 2),
fn(z)P (f(z)) and fn(qz+c)P (f(qz+c)) share (∞, 0), then then the conclusion
of Theorem 1.4 holds.

Theorem 1.7 Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, c ∈ C and n is an integer
satisfying n ≥ m+6. If fn(z)P (f(z)) and fn(qz+c)P (f(qz+c)) share (∞,∞)
and E3)(1, f

n(z)P (f(z)) = E3)(1, f
n(qz + c)P (f(qz + c)) then the conclusion

of Theorem 1.4 holds.

Theorem 1.8 Let f be a non-constant meromorphic function of zero-order.
Suppose that q is a non-zero complex constant, c ∈ C and n is an integer satis-
fying n ≥ m+7. If f(z) and f(qz+c) share (∞, 0) and E3)(1, f

n(z)P (f(z))) =
E3)(1, f

n(qz + c)P (f(qz + c))) then the conclusion of Theorem 1.4 holds.

2 Preliminaries

In this section we provide all the necessary lemmas required to prove our
theorems.
Let us define,

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
(3)

Lemma 2.1 [12, 9] Let f(z) be a non-constant meromorphic function of
zero-order. Suppose that q is a non-zero complex constant, η ∈ C. Then

T (r, f(qz + c)) = T (r, f(z)) + S(r, f).

where S(r, f) = o(T (r, f)) for all r on a set of logarithmic density 1.

Lemma 2.2 [12] Let f(z) be a non-constant meromorphic function of finite
order and c ∈ C. Then

N(r,∞; f(qz + c)) ≤ N(r,∞; f) + S(r, f),

N (r, 0; f(qz + c)) ≤ N (r, 0; f) + S(r, f).
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Lemma 2.3 [1] Let F and G be two non-constant meromorphic functions.
If F and G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞. If H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G) + S(r, F ) + S(r,G),

where N∗(r,∞;F,G) denotes the reduced counting function of those a- points
of F whose multiplicities differ from the multiplicities of the corresponding a-
points of G.

Lemma 2.4 [1] Let F and G be two non-constant meromorphic functions.
If F and G share (∞, k) and E3)(1;F ) = E3)(1;G), where 0 ≤ k ≤ ∞. If
H 6≡ 0, then

T (r, F ) + T (r,G) ≤ 2N2(r, 0;F ) + 2N2(r, 0;G) + 2N(r,∞;F ) + 2N(r,∞;G)

+ 2N∗(r,∞;F,G) + S(r, F ) + S(r,G)

where N∗(r,∞;F,G) denotes the reduced counting function of those a-points
of F whose multiplicities differ from the multiplicities of the corresponding
a-points of G.

Lemma 2.5 [13] Let f(z) be a non-constant meromorphic function and let
a0(z), a1(z),...,an(z)(6≡ 0) be small functions with respect to f . Then
T (r, anf

n + an−1f
n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

3 Proof of the Main Results

Proof of Theorem 1.4.

F = fn(z)P (f(z)), G = fn(qz + c)P (f(qz + c)). (4)

Then it is easy to verify that F and G share (1, 2) and (∞,∞). Let H be
defined as above. Suppose that H 6≡ 0. It follows from Lemma 2.3 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F )+N(r,G)+N∗(r,∞;F,G)+S(r, F )+S(r,G).

(5)
According to Lemma 2.5 we have

T (r, F ) = (n+m)T (r, f) + S(r, f). (6)

It is obvious that

N2

(
r,

1

F

)
= 2N

(
r,

1

fn(z)P (f(z))

)
(7)
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N(r, F ) = N(r,G) = N(r, f) (8)

N∗(r,∞;F,G) = 0 (9)

N2

(
r,

1

G

)
= 2N

(
r,

1

fn(qz + c)P (f(qz + c))

)
(10)

By combining equations (5) to (10), we deduce,

(n−m− 6)T (r, f) ≤ S(r, f), (11)

which contradicts that n ≥ m+ 6.
Thus, we have H ≡ 0 and hence,(

F ′′

F ′
− 2F ′

F − 1

)
=

(
G′′

G′
− 2G′

G− 1

)
.

By integrating twice ,we get

1

F − 1
=

A

G− 1
+B. (12)

where A 6= 0 and B are constants, From (12) we have,

G =
(B − A)F + (A−B − 1)

BF − (B + 1)
(13)

Now, we have the following three subcases:
Subcase 1.4.1. Suppose that B 6= 0,−1. Then from (13), we have,

N

(
r,

1

F − B+1
B

)
= N(r,G). (14)

From the Second Fundamental Theorem, Lemma 2.5 and (6), we have,

(n+m)T (r, f) = T (r, F ) + S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − B+1
B

)
+ S(r, f)

≤ 2N(r, f) +N

(
r,

1

(fnP (f(z))

)
+ S(r, f),

(15)

which contradicts n ≥ m+ 6.
Subcase 1.4.2. Suppose that B = −1. From (13) we have

G =
(A+ 1)F − A

F
(16)
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i) If A 6= −1, we obtain from (16), we get,

N

(
r,

1

F − A
A+1

)
= N

(
r,

1

G

)
. (17)

From the Second Fundamental Theorem, Lemma 2.5, we have

(n+m)T (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − A
A+1

)
+ S(r, f),

≤ N(r, fnP (f(z))) +N

(
r,

1

fnP (f(z))

)

+N

(
r,

1

fn(qz + c)P (f(qz + c))

)
+ S(r, f),

which contradicts n ≥ m+ 6.

ii) If A = −1 and from (16), we get FG = 1, that is [fnP (f(z)][fn(qz +
c)P (f(qz + c))] = 1, from above it is clear that the function f can’t have any
zero and poles. Therefore N(r, 1

f
) = S(r, f) = N(r, f). which is a contradic-

tion .
Subcase 1.4.3. Suppose that B = 0. From (13)

G = AF − (A− 1) (18)

If A 6= 1, from (18) we obtain

N

(
r,

1

F − A−1
A

)
= N

(
r,

1

G

)
(19)

Then from the Second Fundamental Theorem and Lemma 2.5

(n+m)T (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − A−1
A

)
+ S(r, f),

≤ N(r, fnP (f(z))) +N

(
r,

1

fnP (f(z))

)

+N

(
r,

1

fn(qz + c)P (f(qz + c))

)
+ S(r, f),

which contradicts n ≥ m+ 6.
Hence A = 1. From (18) we have F = G, i.e

[fnP (f(z)] ≡ [fn(qz + c)P (f(qz + c))]
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This completes the proof of Theorem 1.4.

Proof of Theorem 1.6.

F = fn(z)P (f(z)), G = fn(qz + c)P (f(qz + c)). (20)

Then it is easy to verify that F and G share (1, 2) and (∞, 0). Let H be
defined as above. Suppose that H 6≡ 0. It follows from Lemma 2.3 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)

+ S(r, F ) + S(r,G). (21)

According to Lemma 2.5 we have

T (r, F ) = (n+m)T (r, f) + S(r, f). (22)

It is obvious that

N2

(
r,

1

F

)
= 2N

(
r,

1

fn(z)P (f(z))

)
(23)

N(r, F ) = N(r,G) = N(r, f) (24)

N∗(r,∞;F,G) ≤ N(r, f) (25)

N2

(
r,

1

G

)
= 2N

(
r,

1

fn(qz + c)P (f(qz + c))

)
(26)

By combining (21) to (26), we deduce,

(n−m− 7)T (r, f) ≤ S(r, f), (27)

which contradicts that n ≥ m+ 7.
Thus, we have H ≡ 0 and similar arguments as in Theorem 1.4, we see that
Theorem 1.6 holds.
This completes the proof of Theorem 1.6.

Proof of Theorem 1.7.

F = fn(z)P (f(z)), G = fn(qz + c)P (f(qz + c)). (28)

Then it is easy to verify that F and G share E3)(1, F ) = E3)(1, G) and (∞,∞).
Let H be defined as above. Suppose that H 6≡ 0. It follows from Lemma 2.4
that

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ 2N(r, F ) + 2N(r,G)

+ 2N∗(r,∞;F,G) + S(r, F ) + S(r,G). (29)
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According to Lemma 2.5 we have

T (r, F ) = (n+m)T (r, f) + S(r, f). (30)

By Lemmas 2.1 and 2.5 we have

T (r,G) = (n+m)T (r, f) + S(r, f). (31)

It is obvious that

N2

(
r,

1

F

)
= 2N

(
r,

1

fn(z)P (f(z))

)
(32)

N(r, F ) = N(r,G) = N(r, f) (33)

N∗(r,∞;F,G) = 0 (34)

N2

(
r,

1

G

)
= 2N

(
r,

1

fn(qz + c)P (f(qz + c))

)
(35)

By combining (29) to (35), we deduce,

(2n− 2m− 12)T (r, f) ≤ S(r, f), (36)

which contradicts that n ≥ m+ 6.
Thus, we have H ≡ 0 and similar arguments as in Theorem 1.4, we see that
Theorem 1.7 holds.
This completes the proof of Theorem 1.7.

Proof of Theorem 1.8.

F = fn(z)P (f(z)), G = fn(qz + c)P (f(qz + c)). (37)

Then it is easy to verify that F and G share E3)(1, F ) = E3)(1, G) and (∞, 0).
Let H be defined as above. Suppose that H 6≡ 0. It follows from Lemma 2.4
that

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ 2N(r, F ) + 2N(r,G)

+ 2N∗(r,∞;F,G) + S(r, F ) + S(r,G). (38)

According to Lemma 2.5 we have

T (r, F ) = (n+m)T (r, f) + S(r, f). (39)

By Lemmas 2.1 and 2.5 we have
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T (r,G) = (n+m)T (r, f) + S(r, f). (40)

It is obvious that

N2

(
r,

1

F

)
= 2N

(
r,

1

fn(z)P (f(z))

)
(41)

N(r, F ) = N(r,G) = N(r, f) (42)

N∗(r,∞;F,G) ≤ N(r, f) (43)

N2

(
r,

1

G

)
= 2N

(
r,

1

fn(qz + c)P (f(qz + c))

)
(44)

By combining (38) to (44), we deduce,

(2n− 2m− 14)T (r, f) ≤ S(r, f), (45)

which contradicts that n ≥ m+ 7.
Thus, we have H ≡ 0 and similar arguments as in Theorem 1.4, we see that
Theorem 1.8 holds.
This completes the proof of Theorem 1.8.

4 Conclusion

By considering the q- shift difference polynomial in the functions of the form
fnP (f(z)) and fn(qz + c)P (f(qz + c)), along with weighted sharing concept
in Theorem 1.4 to Theorem 1.8, we prove important analogous results for
transcendental meromorphic functions of zero order.
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5 Open Problem

1. Can the condition for the lower bound n in Theorems 1.4 to 1.8 be reduced
any further?
2.Can the difference polynomials in Theorems 1.4 to 1.8 be replaced by the
difference polynomials of form fnP (f)

∏d
j=1 f(z + cj)

vj
∏s

j=1 f
(i)(z)?
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