Copyright ©ICSRS Publication, 2025

Uniqueness results on meromorphic functions with q-shift difference polynomials

Harina P. Waghamore and Megha M. Manakame

Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, India - 560 056

E-mail:harinapw@gmail.com and megha.manakame80@gmail.com

Received 2 January 2025; Accepted 20 February 2025

Abstract

In this article, we use weighted sharing values to investigate the uniqueness theorems for meromorphic functions of specific types of q-shift difference polynomials of zero order. The results in this article extend and improve certain previous results due to [10]

Keywords: Meromorphic functions, q-shift, Weighted sharing, Uniqueness

2010 Mathematics Subject Classification: 30D35.

1 Introduction and Main Results

Nevanlinna theory is a field of complex analysis that studies the value distribution of meromorphic functions. It was established by Rolf Nevanlinna in the early twentieth century, and Nevanlinna theory is a useful framework for investigating the value distribution of meromorphic functions, providing significant insights into their genesis and behavior. Nevanlinna theory provides a thorough and rigorous framework for comprehending the complex behavior of meromorphic functions, making it a key field of study in complex analysis.

For the elementary definitions and standard notations of the Nevanlinna value distribution theory such as T(r,f), N(r,f), $N\left(r,\frac{1}{f}\right)$, m(r,f) etc see Hayman [6]. The uniqueness theory of meromorphic functions focuses on the criteria that allow for the existence of essentially only one function that meets

these conditions. It demonstrated that any non-constant meromorphic function may be uniquely defined by five values, i.e., if two non-constant meromorphic functions f and g take the same five values at the same locations, then $f \equiv g$.

Let f and g be two non-constant meromorphic functions defined in the open complex plane. The Nevanlinna characteristic function of a meromorphic function f plays a very important role in the value distribution theory and it is denoted by T(r,f) and S(r,f) is any quantity satisfying S(r,f) = o(T(r,f)) where $r \to \infty \in \mathbb{R}^+ \setminus E$, where measure of E is finite. We have T(r,f) = m(r,f) + N(r,f), which clearly shows that T(r,f) is non-negative. If f(z) - a and g(z) - a assumes the same zeros with the same multiplicities, then we say that f(z) and g(z) share the value a CM (Counting Multiplicity) and we have E(a,f) = E(a,g). Suppose, if f(z) - a and g(z) - a assumes the same zeros ignoring the multiplicities, then we say that f(z) and g(z) share the value a IM (Ignoring Multiplicity) and we will have $\overline{E}(a,f) = \overline{E}(a,g)$. We denote by $E_{k}(a,f)$ the set of all a- points of f with multiplicities not exceeding k, where an a- point is counted according to its multiplicity. Also we denote by $\overline{E}_{k}(a,f)$ the set of distinct a- points of f with multiplicities not greater than k.

Definition 1.1 [8] Let f and g share the value a IM. We denote by $\overline{N}_*(r, a; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g. Clearly, $\overline{N}_*(r, a; f, g) \equiv \overline{N}_*(r, a; g, f)$ and $\overline{N}_*(r, a; f, g) = \overline{N}_L(r, a; f) + \overline{N}_L(r, a; g)$, where $\overline{N}_L(r, a; f)$ denotes the counting function of those 1-points of f and g, when two meromorphic functions f and g share the value 1 IM and z_0 is a 1-point of f of order g, and a 1-point of g of order g, such that g < g.

Definition 1.2 [7] For a complex number $a \in \mathbb{C} \cup \{\infty\}$, we denote by $E_k(a, f)$ the set of all a-points of f where an a-point with multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k. For a complex number $a \in \mathbb{C} \cup \{\infty\}$, such that $E_k(a, f) = E_k(a, g)$, then we say that f and g share the value a with weight k.

The definition implies that if f, g share the value a with weight k, then z_0 is a zero of f-a with multiplicity $m(\leq k)$ if and only if it is a zero of g-a with multiplicity $m(\leq k)$ and z_0 is a zero of f-a with multiplicity m(>k) if and only if it is a zero of g-a with multiplicity n(>k), where m is not necessarily equal to n. We write f, g share (a, k) to mean that f, g share the value a with wieght k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \leq p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

In 1996, R. Bruck [2] posed the following conjecture. **Conjecture.** [2] Let f be a non-constant entire function. Suppose that $\rho_1(f)$

is not positive integer or infinite, if f and f' share one finite value a CM, then

$$\frac{f'-a}{f-a} = c, (1)$$

for some non-zero constant c, where $\rho_1(f)$ is the first iterated order of f which is defined by

$$\rho_1(f) = lim sup_{r \to \infty} \frac{log log T(r, f)}{log r}.$$
 (2)

In 1998, Gundersen and Yang [5] proved that the conjecture is true if f is of finite order and in 1999, Yang [14] generalized their result to the k^{th} derivatives. In 2004, Chen and Shon [4] proved that the conjecture is true for entire functions of first iterated order $\rho_1(f) < \frac{1}{2}$.

In 2008, Yang and Zhang [15] considered the uniqueness problems on meromorphic function f^n sharing value with its first derivative. One of their results can be stated as follows.

Theorem A.[15] Let f(z) be a non-constant meromorphic function and $n \ge 12$ be an integer. Let $F = f^n$. If F and F' share 1 CM, then F = F', and f assumes the form $f(z) = ce^{\frac{1}{n}z}$.

The difference Nevanlinna theory and its application to the uniqueness theory have recently increased interest among researchers.

In 2012, Chen, Chen and Li obtained following results.

Theorem B.[3] Let f(z) be a non-constant meromorphic function finite order and $n \geq 9$ be an integer. Let $F(z) = f(z)^n$. If F(z) and $\Delta_c F$ share $(1, \infty)$ CM, then $F(z) = \Delta_c F$.

In 2019, Meng and Li[11] proved the following results.

Theorem C.[11] Let f(z) and g(z) be two non-constant meromorphic functions and let n, d, k be positive integers with $n > 2k + \frac{3k+9}{d}, d \ge 2$, and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n)^{(k)}}(S,1) = E_{(g^n)^{(k)}}(S,1)$, then one of the following two cases holds:

- 1. $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ for three non-zero constants c_1 , c_2 and c such that $(-1)^{kd} (c_1 c_2)^{nd} (nc)^{2kd} = 1$;
- 2. f = tg with $t^{nd} = 1$, $t \in \mathbb{C}$.

Theorem D.[11] Let f(z) and g(z) be two non-constant meromorphic functions and let n, d, k be positive integers with $n > 2k + \frac{8k+14}{d}, d \ge 2$ and $S = \{a \in \mathbb{C} : a^d = 1\}$. If $E_{(f^n)^{(k)}}(S,0) = E_{(g^n)^{(k)}}(S,0)$, then one of the following two cases holds:

- 1. $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$ for three non-zero constants c_1 , c_2 and c such that $(-1)^{kd} (c_1 c_2)^{nd} (nc)^{2kd} = 1$;
- 2. f = tq with $t^{nd} = 1$, $t \in \mathbb{C}$.

In 2019, Meng and Liu [10] obtained the following results by considering q-shift f(qz+c) by replacing F'.

Theorem E.[10] Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $\eta \in \mathbb{C}$ and n is an integer satisfying $n \geq 7$. If $f^n(z)$ and $f^n(qz+\eta)$ share (1,2), f(z) and $f(qz+\eta)$ share (∞,∞) , then $f(z) = tf(qz+\eta)$, where t is a constant and $t^n = 1$.

Corollary 1.3 [10] Let f be a non-constant entire function of zero-order. Suppose that q is a non-zero complex constant, $\eta \in \mathbb{C}$ and n is an integer satisfying $n \geq 5$. If $f^n(z)$ and $f^n(qz + \eta)$ share (1, 2), then $f(z) = tf(qz + \eta)$, where t is a constant and $t^n = 1$.

Theorem F.[10] Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $\eta \in \mathbb{C}$ and n is an integer satisfying $n \geq 8$. If $f^n(z)$ and $f^n(qz + \eta)$ share (1, 2), f(z) and $f(qz + \eta)$ share $(\infty, 0)$, then $f(z) = tf(qz + \eta)$, where t is a constant and $t^n = 1$.

Theorem G.[10] Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $\eta \in \mathbb{C}$ and n is an integer satisfying $n \geq 7$. If f(z) and $f(qz + \eta)$ share (∞, ∞) and $E_{3}(1, f^n(z)) = E_{3}(1, f^n(qz + \eta))$ then $f(z) = tf(qz + \eta)$, where t is a constant and $t^n = 1$.

Theorem H.[10] Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $\eta \in \mathbb{C}$ and n is an integer satisfying $n \geq 8$. If f(z) and $f(qz + \eta)$ share $(\infty, 0)$ and $E_{3}(1, f^n(z)) = E_{3}(1, f^n(qz + \eta))$ then $f(z) = tf(qz + \eta)$, where t is a constant and $t^n = 1$.

Here, we used the idea of weighted sharing values to extend the above results.

Where $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ be a non-zero polynomial, where $a_0, a_1, ..., a_n \neq 0$ are complex constants and m be the number of distinct zeros of P(z).

Now, it will be interesting to study what happens to Theorems E - H when we consider a more generalized q- shift form $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ and obtained the following results.

Theorem 1.4 Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $c \in \mathbb{C}$ and n is an integer satisfying $n \ge m+6$. If $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ share (1,2), $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ share (∞,∞) , then $f^n(z)P(f(z)) \equiv f^n(qz+c)P(f(qz+c))$.

Corollary 1.5 Let f be a non-constant entire function of zero-order. Suppose that q is a non-zero complex constant, $c \in \mathbb{C}$ and n is an integer satisfying $n \geq m+4$. If $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ share (1,2), then the conclusion of Theorem 1.4 holds.

Theorem 1.6 Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $c \in \mathbb{C}$ and n is an integer satisfying $n \geq m+7$. If $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ share (1,2), $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ share $(\infty,0)$, then then the conclusion of Theorem 1.4 holds.

Theorem 1.7 Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $c \in \mathbb{C}$ and n is an integer satisfying $n \geq m+6$. If $f^n(z)P(f(z))$ and $f^n(qz+c)P(f(qz+c))$ share (∞,∞) and $E_{3}(1,f^n(z)P(f(z)))=E_{3}(1,f^n(qz+c)P(f(qz+c)))$ then the conclusion of Theorem 1.4 holds.

Theorem 1.8 Let f be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $c \in \mathbb{C}$ and n is an integer satisfying $n \ge m+7$. If f(z) and f(qz+c) share $(\infty,0)$ and $E_{3}(1, f^n(z)P(f(z))) = E_{3}(1, f^n(qz+c)P(f(qz+c)))$ then the conclusion of Theorem 1.4 holds.

2 Preliminaries

In this section we provide all the necessary lemmas required to prove our theorems.

Let us define,

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right) \tag{3}$$

Lemma 2.1 [12, 9] Let f(z) be a non-constant meromorphic function of zero-order. Suppose that q is a non-zero complex constant, $\eta \in \mathbb{C}$. Then

$$T(r, f(qz+c)) = T(r, f(z)) + S(r, f).$$

where S(r, f) = o(T(r, f)) for all r on a set of logarithmic density 1.

Lemma 2.2 [12] Let f(z) be a non-constant meromorphic function of finite order and $c \in \mathbb{C}$. Then

$$N(r, \infty; f(qz+c)) \le N(r, \infty; f) + S(r, f),$$

$$N(r, 0; f(qz+c)) \le N(r, 0; f) + S(r, f).$$

Lemma 2.3 [1] Let F and G be two non-constant meromorphic functions. If F and G share (1,2) and (∞,k) , where $0 \le k \le \infty$. If $H \not\equiv 0$, then

$$T(r,F) \le N_2(r,0;F) + N_2(r,0;G) + \overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + \overline{N}_*(r,\infty;F,G) + S(r,F) + S(r,G),$$

where $\overline{N}_*(r,\infty;F,G)$ denotes the reduced counting function of those a- points of F whose multiplicities differ from the multiplicities of the corresponding apoints of G.

Lemma 2.4 [1] Let F and G be two non-constant meromorphic functions. If F and G share (∞, k) and $E_{3}(1; F) = E_{3}(1; G)$, where $0 \le k \le \infty$. If $H \not\equiv 0$, then

$$T(r,F) + T(r,G) \le 2N_2(r,0;F) + 2N_2(r,0;G) + 2\overline{N}(r,\infty;F) + 2\overline{N}(r,\infty;G) + 2\overline{N}_*(r,\infty;F,G) + S(r,F) + S(r,G)$$

where $\overline{N}_*(r,\infty;F,G)$ denotes the reduced counting function of those a-points of F whose multiplicities differ from the multiplicities of the corresponding a-points of G.

Lemma 2.5 [13] Let f(z) be a non-constant meromorphic function and let $a_0(z)$, $a_1(z)$,..., $a_n(z) (\not\equiv 0)$ be small functions with respect to f. Then $T(r, a_n f^n + a_{n-1} f^{n-1} + ... + a_1 f + a_0) = nT(r, f) + S(r, f)$.

3 Proof of the Main Results

Proof of Theorem 1.4.

$$F = f^{n}(z)P(f(z)), G = f^{n}(qz+c)P(f(qz+c)).$$
(4)

Then it is easy to verify that F and G share (1,2) and (∞,∞) . Let H be defined as above. Suppose that $H \not\equiv 0$. It follows from Lemma 2.3 that

$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + \overline{N}(r,F) + \overline{N}(r,G) + \overline{N}_*(r,\infty;F,G) + S(r,F) + S(r,G).$$

$$(5)$$

According to Lemma 2.5 we have

$$T(r,F) = (n+m)T(r,f) + S(r,f).$$
 (6)

It is obvious that

$$N_2\left(r, \frac{1}{F}\right) = 2\overline{N}\left(r, \frac{1}{f^n(z)P(f(z))}\right) \tag{7}$$

$$\overline{N}(r,F) = \overline{N}(r,G) = \overline{N}(r,f) \tag{8}$$

$$\overline{N}_*(r,\infty;F,G) = 0 \tag{9}$$

$$N_2\left(r, \frac{1}{G}\right) = 2\overline{N}\left(r, \frac{1}{f^n(qz+c)P(f(qz+c))}\right)$$
(10)

By combining equations (5) to (10), we deduce,

$$(n-m-6)T(r,f) \le S(r,f),\tag{11}$$

which contradicts that $n \geq m + 6$.

Thus, we have $H \equiv 0$ and hence,

$$\left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) = \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right).$$

By integrating twice, we get

$$\frac{1}{F-1} = \frac{A}{G-1} + B. ag{12}$$

where $A \neq 0$ and B are constants, From (12) we have,

$$G = \frac{(B-A)F + (A-B-1)}{BF - (B+1)} \tag{13}$$

Now, we have the following three subcases:

Subcase 1.4.1. Suppose that $B \neq 0, -1$. Then from (13), we have,

$$\overline{N}\left(r, \frac{1}{F - \frac{B+1}{B}}\right) = \overline{N}(r, G). \tag{14}$$

From the Second Fundamental Theorem, Lemma 2.5 and (6), we have,

$$(n+m)T(r,f) = T(r,F) + S(r,f)$$

$$\leq \overline{N}(r,F) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{F - \frac{B+1}{B}}\right) + S(r,f)$$

$$\leq 2\overline{N}(r,f) + \overline{N}\left(r,\frac{1}{(f^n P(f(z)))}\right) + S(r,f),$$

$$(15)$$

which contradicts $n \ge m + 6$.

Subcase 1.4.2. Suppose that B = -1. From (13) we have

$$G = \frac{(A+1)F - A}{F} \tag{16}$$

i) If $A \neq -1$, we obtain from (16), we get,

$$\overline{N}\left(r, \frac{1}{F - \frac{A}{A+1}}\right) = \overline{N}\left(r, \frac{1}{G}\right). \tag{17}$$

From the Second Fundamental Theorem, Lemma 2.5, we have

$$(n+m)T(r,f) = T(r,F) + S(r,f) \le \overline{N}(r,F) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{F - \frac{A}{A+1}}\right) + S(r,f),$$

$$\le \overline{N}(r,f^n P(f(z))) + \overline{N}\left(r,\frac{1}{f^n P(f(z))}\right)$$

$$+ \overline{N}\left(r,\frac{1}{f^n (qz+c)P(f(qz+c))}\right) + S(r,f),$$

which contradicts $n \geq m + 6$.

ii) If A=-1 and from (16), we get FG=1, that is $[f^nP(f(z))][f^n(qz+c)P(f(qz+c))]=1$, from above it is clear that the function f can't have any zero and poles. Therefore $\overline{N}(r,\frac{1}{f})=S(r,f)=\overline{N}(r,f)$. which is a contradiction .

Subcase 1.4.3. Suppose that B = 0. From (13)

$$G = AF - (A - 1) \tag{18}$$

If $A \neq 1$, from (18) we obtain

$$\overline{N}\left(r, \frac{1}{F - \frac{A-1}{A}}\right) = \overline{N}\left(r, \frac{1}{G}\right) \tag{19}$$

Then from the Second Fundamental Theorem and Lemma 2.5

$$\begin{split} (n+m)T(r,f) &= T(r,F) + S(r,f) \leq \overline{N}(r,F) + \overline{N}\Bigg(r,\frac{1}{F}\Bigg) + \overline{N}\Bigg(r,\frac{1}{F-\frac{A-1}{A}}\Bigg) + S(r,f), \\ &\leq \overline{N}(r,f^nP(f(z))) + \overline{N}\Bigg(r,\frac{1}{f^nP(f(z))}\Bigg) \\ &+ \overline{N}\Bigg(r,\frac{1}{f^n(qz+c)P(f(qz+c))}\Bigg) + S(r,f), \end{split}$$

which contradicts $n \geq m + 6$.

Hence A = 1. From (18) we have F = G, i.e

$$[f^n P(f(z))] \equiv [f^n (qz+c)P(f(qz+c))]$$

This completes the proof of Theorem 1.4.

Proof of Theorem 1.6.

$$F = f^{n}(z)P(f(z)), G = f^{n}(qz+c)P(f(qz+c)).$$
(20)

Then it is easy to verify that F and G share (1,2) and $(\infty,0)$. Let H be defined as above. Suppose that $H \not\equiv 0$. It follows from Lemma 2.3 that

$$T(r,F) \le N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) + \overline{N}(r,F) + \overline{N}(r,G) + \overline{N}_*(r,\infty;F,G) + S(r,F) + S(r,G).$$

$$(21)$$

According to Lemma 2.5 we have

$$T(r,F) = (n+m)T(r,f) + S(r,f).$$
 (22)

It is obvious that

$$N_2\left(r, \frac{1}{F}\right) = 2\overline{N}\left(r, \frac{1}{f^n(z)P(f(z))}\right)$$
(23)

$$\overline{N}(r,F) = \overline{N}(r,G) = \overline{N}(r,f) \tag{24}$$

$$\overline{N}_*(r,\infty;F,G) \le \overline{N}(r,f)$$
 (25)

$$N_2\left(r, \frac{1}{G}\right) = 2\overline{N}\left(r, \frac{1}{f^n(qz+c)P(f(qz+c))}\right)$$
(26)

By combining (21) to (26), we deduce,

$$(n-m-7)T(r,f) \le S(r,f), \tag{27}$$

which contradicts that $n \geq m + 7$.

Thus, we have $H \equiv 0$ and similar arguments as in Theorem 1.4, we see that Theorem 1.6 holds.

This completes the proof of Theorem 1.6.

Proof of Theorem 1.7.

$$F = f^{n}(z)P(f(z)), G = f^{n}(qz+c)P(f(qz+c)).$$
(28)

Then it is easy to verify that F and G share $E_{3}(1, F) = E_{3}(1, G)$ and (∞, ∞) . Let H be defined as above. Suppose that $H \not\equiv 0$. It follows from Lemma 2.4 that

$$T(r,F) + T(r,G) \le 2N_2\left(r,\frac{1}{F}\right) + 2N_2\left(r,\frac{1}{G}\right) + 2\overline{N}(r,F) + 2\overline{N}(r,G) + 2\overline{N}_*(r,\infty;F,G) + S(r,F) + S(r,G).$$

$$(29)$$

According to Lemma 2.5 we have

$$T(r,F) = (n+m)T(r,f) + S(r,f).$$
 (30)

By Lemmas 2.1 and 2.5 we have

$$T(r,G) = (n+m)T(r,f) + S(r,f).$$
 (31)

It is obvious that

$$N_2\left(r, \frac{1}{F}\right) = 2\overline{N}\left(r, \frac{1}{f^n(z)P(f(z))}\right)$$
(32)

$$\overline{N}(r,F) = \overline{N}(r,G) = \overline{N}(r,f) \tag{33}$$

$$\overline{N}_*(r,\infty;F,G) = 0 \tag{34}$$

$$N_2\left(r, \frac{1}{G}\right) = 2\overline{N}\left(r, \frac{1}{f^n(qz+c)P(f(qz+c))}\right)$$
(35)

By combining (29) to (35), we deduce,

$$(2n - 2m - 12)T(r, f) \le S(r, f), \tag{36}$$

which contradicts that $n \geq m + 6$.

Thus, we have $H \equiv 0$ and similar arguments as in Theorem 1.4, we see that Theorem 1.7 holds.

This completes the proof of Theorem 1.7.

Proof of Theorem 1.8.

$$F = f^{n}(z)P(f(z)), G = f^{n}(qz+c)P(f(qz+c)).$$
(37)

Then it is easy to verify that F and G share $E_{3}(1, F) = E_{3}(1, G)$ and $(\infty, 0)$. Let H be defined as above. Suppose that $H \not\equiv 0$. It follows from Lemma 2.4 that

$$T(r,F) + T(r,G) \le 2N_2\left(r,\frac{1}{F}\right) + 2N_2\left(r,\frac{1}{G}\right) + 2\overline{N}(r,F) + 2\overline{N}(r,G) + 2\overline{N}_*(r,\infty;F,G) + S(r,F) + S(r,G).$$

$$(38)$$

According to Lemma 2.5 we have

$$T(r,F) = (n+m)T(r,f) + S(r,f).$$
(39)

By Lemmas 2.1 and 2.5 we have

$$T(r,G) = (n+m)T(r,f) + S(r,f). (40)$$

It is obvious that

$$N_2\left(r, \frac{1}{F}\right) = 2\overline{N}\left(r, \frac{1}{f^n(z)P(f(z))}\right) \tag{41}$$

$$\overline{N}(r,F) = \overline{N}(r,G) = \overline{N}(r,f) \tag{42}$$

$$\overline{N}_*(r,\infty;F,G) \le \overline{N}(r,f)$$
 (43)

$$N_2\left(r, \frac{1}{G}\right) = 2\overline{N}\left(r, \frac{1}{f^n(qz+c)P(f(qz+c))}\right)$$
(44)

By combining (38) to (44), we deduce,

$$(2n - 2m - 14)T(r, f) \le S(r, f), \tag{45}$$

which contradicts that $n \geq m + 7$.

Thus, we have $H \equiv 0$ and similar arguments as in Theorem 1.4, we see that Theorem 1.8 holds.

This completes the proof of Theorem 1.8.

4 Conclusion

By considering the q- shift difference polynomial in the functions of the form $f^n P(f(z))$ and $f^n (qz + c) P(f(qz + c))$, along with weighted sharing concept in Theorem 1.4 to Theorem 1.8, we prove important analogous results for transcendental meromorphic functions of zero order.

Acknowledgment

Authors are indebt to the editor and refrees for their careful reading and valuable suggestions which helped to improve the manuscript.

5 Open Problem

- 1. Can the condition for the lower bound n in Theorems 1.4 to 1.8 be reduced any further?
- 2.Can the difference polynomials in Theorems 1.4 to 1.8 be replaced by the difference polynomials of form $f^n P(f) \prod_{j=1}^d f(z+c_j)^{v_j} \prod_{j=1}^s f^{(i)}(z)$?

References

- [1] A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull.Math., 31, (2007), 7-17.
- [2] R. Bruck, On entire functions which share one value CM with their first derivative, Results Math., 30, (1996), 21-24.
- [3] B. Q. Chen, Z. X. Chen and S. Li, Uniqueness of difference operators of meromorphic functions, J. Ineq. Appl., (2012), Art 48.
- [4] Z. X. Chen and K. H. Shon, On conjecture of R. Bruck concerning the entire function sharing one value CM with its derivatives, Taiwanese J. Math., 8, (2004), 235-244.
- [5] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223, (1998), 88-95.
- [6] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables and Elliptic Equations, 46(3), (2001), 241-253.
- [8] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J, 161, (2001), 193-206.
- [9] K. Liu, X. Liu and T. Cao, Some results on zeros and uniqueness of difference-differential polynomials, Appl. Math. J. Chinese Univ. Ser. B, 27(1), (2012), 94-104.
- [10] C. Meng and G. Liu, Weighted sharing and uniqueness for the shifts of meromorphic functions, Tbilisi Mathematical Journal 12(2), (2019), 17-27.
- [11] C. Meng and Xu. Li, On unicity of meromorphic functions and their derivatives, The Journal of Analysis, 28(3), (2019), 879-894.
- [12] J. Xu and X. Zhang, The zeros of q-shift difference polynomials of meromorphic functions, Adv. Difference Equ, (2012), 200, 10 pp.
- [13] C. C. Yang and H. X. Yi, *Uniqueness theory of meromorphic functions, Mathematics and its Applications*, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.

- [14] L. Z. Yang, Solution of a differential equation and its applications, Kodai Math. J. 22. (1999), 458-464.
- [15] L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76, (2008), 140-150.