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Abstract

This study develops and investigates an implicit finite dif-
ference approach (FDA) for solving a class of linear variable-
order (VO) time-fractional partial differential equations (PDEs)
that involve both convection and diffusion effects. The scheme
is constructed by approximating the VO time-fractional deriva-
tive through a finite difference formulation and applying cen-
tral difference operators for the spatial derivatives. A com-
prehensive theoretical analysis is carried out. By means of
Fourier analysis, the method is shown to be unconditionally
stable and convergent. In addition, the unique solvability of
the resulting discrete system is demonstrated. To support the
theoretical findings, several numerical experiments are pre-
sented, which confirm the accuracy, efficiency, and robustness
of the proposed method.

Keywords: Variable-order fractional derivative, Convection–diffusion
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1 Introduction

Fractional calculus (FC), a branch of mathematical analysis that generalizes
differentiation and integration to non-integer orders, dates back to a ques-
tion posed by L’Hôpital to Leibniz in 1695 [1, 2]. For centuries, it remained
mainly of theoretical interest to mathematicians such as Liouville, Riemann,
and Grünwald [3, 4]. In recent decades, however, FC has become a vital tool for
modeling complex systems in diverse scientific and engineering fields. Its abil-
ity to capture non-local interactions and memory effects provides an advantage
over classical integer-order models in describing phenomena such as anomalous
diffusion, viscoelasticity, signal processing, and fluid dynamics [5, 6, 7]. A no-
table extension of FC is VO-FO calculus, where the order of differentiation
α is not constant but depends on time, space, or other variables, i.e., α(x, t)
[8, 9]. This generalization offers a more flexible and accurate framework for
modeling systems in which memory effects or physical processes vary dynam-
ically [10, 11]. VO operators are, for example, effective in modeling diffusion
in heterogeneous media with spatially varying rates or viscoelastic materials
with temperature-dependent properties [12, 13]. The increasing interest in VO
is reflected in extensive research on its theory and applications [14, 15].

Despite their modeling benefits, exact analytical solutions of VO-FO-PDEs
are rarely obtainable, motivating the development of efficient numerical schemes
[16, 17]. Among them, FDA are particularly popular due to their simplicity
and effectiveness in discretizing operators [18, 19, 20, 21, 22]. The major
challenge lies in discretizing the non-local FO derivative. Various schemes
have been proposed, including Grünwald–Letnikov (GL)-based approximations
[23, 24, 25, 26], and the widely used L1 scheme for the Caputo derivative, noted
for its simplicity and solid theoretical basis [27, 28]. Higher-order schemes
such as L1-2 have also been introduced to improve accuracy [29]. For time-
dependent problems, the choice between explicit and implicit schemes is cru-
cial. Explicit schemes are simple but suffer from restrictive stability conditions,
whereas implicit schemes generally provide better stability. Unconditionally
stable schemes are particularly desirable since they impose no restriction on
the time step relative to the spatial mesh size [30, 31]. Stability and conver-
gence analysis of such schemes is essential, and Fourier/von Neumann analysis
has been widely used for linear FO PDEs [32, 33]. To address the high compu-
tational cost from the non-local nature of FO operators, fast algorithms have
also been developed [34, 35].

This work focuses on VO time-FO convection–diffusion equations (CDEs),
which are important for modeling transport processes combining anomalous
diffusion and convection with spatially and temporally varying characteristics
[36, 37, 38]. While constant-order FO convection–diffusion equations have
been extensively studied [39, 40], VO time FO-CDEs remain more challenging.
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In addition, non-standard FDA schemes have been investigated to preserve
key physical properties of the continuous models [41, 42]. Related problems,
such as FO Burgers’ equations, have also been widely explored, illustrating
the broad applicability of these approaches [43, 44]. The paper is structured
as follows: Section 2 introduces the mathematical preliminaries. Section 3
develops the implicit FDA and rigorously analyzes its stability, convergence,
and solvability. Section 4 presents numerical results validating the theory.
Section 5 concludes with final remarks.

2 Basic Concepts

This section provides the necessary mathematical definitions and concepts that
form the foundation of the numerical scheme developed in this paper.

Definition 2.1 ([3, 17]) For a sufficiently smooth function v(t), the Caputo
FO derivative of order α(x, t) > 0 is defined as

∂α(x,t)v(x, t)

∂tα(x,t)
=


1

Γ(m− α(x, t))

∫ t

0
(t− ξ)m−α(x,t)−1d

mv(x, ξ)

dξm
dξ, m− 1 < α(x, t) < m,

dmv(x, t)

dtm
, α(x, t) = m ∈ N,

(1)

where Γ(·) denotes the Gamma function and m = ⌈α(x, t)⌉ is the smallest
integer greater than or equal to α(x, t).

Definition 2.2 ([8, 10]) Let α(x, t) be a function defined such that 0 < α(x, t) < 1
for all x and t in the domain. The VO time-FO Caputo derivative of a function
v(x, t) is defined as :

∂α(x,t)v(x, t)

∂tα(x,t)
=

1

Γ(1− α(x, t))

∫ t

0

(t− ξ)−α(x,t)∂v(x, ξ)

∂ξ
dξ. (2)

The non-local (integral) nature of the FO derivative necessitates a special-
ized discretization approach. A widely used first-order accurate approximation
for the constant-order Caputo derivative is the L1 scheme.

Definition 2.3 ([27, 28]) For a constant order α ∈ (0, 1), the Caputo FO
derivative at time t = tj+1 can be approximated by the L1 formula :

∂αv(x, tj+1)

∂tα
≈ k−α

Γ(2− α)

j∑
n=0

bn [v(x, tj+1−n)− v(x, tj−n)] , (3)

where the coefficients are given by bn = (n + 1)1−α − n1−α. The numerical
scheme developed in this work is a generalization of this approach for a variable
order α(x, t).
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We now recall standard definitions related to the analysis of FDAs.

Definition 2.4 ( [45]) A FDA is said to be stable in a certain norm ∥ · ∥ if
there exists a constant C > 0, independent of the spatial and temporal step
sizes h and k, such that for any time level j:

∥vj∥ ≤ C∥v0∥, (4)

where vj denotes the numerical solution vector at time tj. If this condition
holds for any choice of h and k, the scheme is called unconditionally stable.

Definition 2.5 ( [46]) A FDA is convergent if the numerical solution vji ap-
proaches the exact solution v(xi, tj) as the step sizes tend to zero. Formally,
for any fixed point (x, t) in the domain:

lim
h,k→0

∣∣v(xi, tj)− vji
∣∣ = 0. (5)

The scheme is said to converge with order p in space and order q in time if the
global error is bounded by O(hp + kq).

Definition 2.6 ([45]) The Fourier stability analysis is a technique used to
assess the stability of linear FDAs, typically under the assumption of periodic
boundary conditions. The method assumes the error can be expressed as a
single Fourier mode, Ej

i = ξjeιθxi (where ι2 = −1). The scheme is stable if the
amplification factor ξ satisfies |ξ| ≤ 1 for all real wave numbers θ .

3 Problem Formulation

This section is devoted to the construction of an implicit FDA for solving a
class of linear VO time-FO convection-diffusion equations. The discretization
of the VO-FO derivative is based on the L1 scheme concept [27, 28] (Definition
2.3), generalized for VO.

Consider the following initial-boundary value problem:
∂α(x,t)v

∂tα(x,t)
+ a(x, t)

∂2v

∂x2
+ c(x, t)

∂v

∂x
= f(x, t), 0 < x < L, t > 0,

v(0, t) = q(t), v(L, t) = p(t),

v(x, 0) = s(x),

(6)

where α(x, t) ∈ (0, 1) is the variable FO order, and the operator ∂α(x,t)

∂tα(x,t) is the
VO time-FO Caputo derivative as defined in Definition 2.2.
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Let ϕ1(h) and ϕ2(k) be two strictly positive functions governing the spatial
and temporal step sizes, respectively. We discretize the domain [0, L] × [0, T ]
by defining the grid points:

xi = iϕ1(h), i = 0, 1, . . . ,M,

tj = jϕ2(k), j = 0, 1, . . . , N.

The discrete approximations of the functions are denoted as:

v(xi, tj) ≈ vji , f(xi, tj) ≈ f j
i ,

a(xi, tj) ≈ aji , c(xi, tj) ≈ cji .

The core of the discretization lies in approximating the non-local VO time-
FO Caputo derivative. Starting from its integral definition (2), we have:

∂α(xi,tj+1)v

∂tα(xi,tj+1)
=

1

Γ(1− α(xi, tj+1))

∫ tj+1

0

(tj+1 − ξ)−α(xi,tj+1)
∂v(xi, ξ)

∂ξ
dξ

=
1

Γ(1− α(xi, tj+1))

j∑
s=0

∫ ts+1

ts

(tj+1 − ξ)−α(xi,tj+1)
∂v(xi, ξ)

∂ξ
dξ.

On each subinterval [ts, ts+1], we approximate the first-order time derivative
using a backward finite difference:

∂v(xi, ξ)

∂ξ

∣∣∣∣
ξ∈[ts,ts+1]

≈ vs+1
i − vsi
ϕ2(k)

+O(ϕ2(k)). (7)

Substituting (7) into the integral and evaluating the resulting Riemann–Liouville
integral analytically yields the generalized L1 formula:

∂α(xi,tj+1)v

∂tα(xi,tj+1)
≈ ϕ2(k)

−α(xi,tj+1)

Γ(2− α(xi, tj+1))

[
vj+1
i − vji +

j∑
n=1

(vj−n+1
i − vj−n

i )δj+1
i (n)

]
,

(8)

where the coefficients are given by:

δj+1
i (n) = (n+ 1)1−α(xi,tj+1) − n1−α(xi,tj+1), for n = 0, 1, . . . , j. (9)

These coefficients inherit the properties from the constant-order L1 scheme
(Definition 2.3), namely:

1. δj+1
i (0) = 1,

2. 1 > δj+1
i (1) > δj+1

i (2) > · · · > 0.
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For the spatial derivatives, we employ second-order central difference ap-
proximations:

∂v(xi, tj+1)

∂x
≈

vj+1
i+1 − vj+1

i−1

2ϕ1(h)
+O(ϕ1(h)

2), (10)

∂2v(xi, tj+1)

∂x2
≈

vj+1
i+1 − 2vj+1

i + vj+1
i−1

ϕ1(h)2
+O(ϕ1(h)

2). (11)

Substituting the approximations (8), (11), and (10) into the governing PDE
(??) evaluated at (xi, tj+1) gives:

ϕ2(k)
−α(xi,tj+1)

Γ(2− α(xi, tj+1))

[
vj+1
i − vji +

j∑
n=1

(vj−n+1
i − vj−n

i )δj+1
i (n)

]

+ aji

(
vj+1
i+1 − 2vj+1

i + vj+1
i−1

ϕ1(h)2

)
+ cji

(
vj+1
i+1 − vj+1

i−1

2ϕ1(h)

)
= f j+1

i .

for i = 1, . . . ,M − 1 and j = 0, . . . , N − 1.
To simplify the notation and analyze the scheme’s properties (stability, con-

vergence - see Definitions 2.4 & 2.5), we introduce the following dimensionless
parameters:

rj+1
i = aji ·

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

ϕ1(h)2
,

wj+1
i = cji ·

ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))

2ϕ1(h)
,

ρj+1
i = ϕ2(k)

α(xi,tj+1)Γ(2− α(xi, tj+1)).

Multiplying the entire equation by ρj+1
i and incorporating the initial and

boundary conditions:

v0i = si, i = 0, . . . ,M,

vj+1
0 = qj+1, vj+1

M = pj+1, j = 0, . . . , N − 1,

we obtain the final implicit finite difference scheme:

(rj+1
i − wj+1

i )vj+1
i−1 + (1− 2rj+1

i )vj+1
i + (rj+1

i + wj+1
i )vj+1

i+1 =

vji −
∑j

n=1(v
j−n+1
i − vj−n

i )δj+1
i (n) + ρj+1

i f j+1
i ,

for i = 1, . . . ,M − 1, j = 0, . . . , N − 1,

vj+1
0 = qj+1, vj+1

M = pj+1,

v0i = si.

(12)
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This resulting system of linear algebraic equations is tridiagonal and will be
shown to be uniquely solvable. Its stability and convergence will be analyzed
in the next section using Fourier analysis (Definition 2.6).

4 Stability of the Approximate Scheme

In this section, we use the method of Fourier analysis to discuss the stability
of the approximate scheme (12). Consider the following equation:

(rj+1
i −wj+1

i )vj+1
i−1+(1−2rj+1

i )vj+1
i +(rj+1

i +wj+1
i )vj+1

i+1 = vji−
j∑

n=1

(vj−n+1
i −vj−n

i )δj+1
i (n)+ρj+1

i F j+1
i ,

(13)
for i = 1, . . . ,M − 1, j = 1, . . . , N − 1. We define the following function:

vj(x) =

{
vji if xi−1/2 < x < xi+1/2, i = 1, . . . ,M − 1;

0 otherwise.

vj(x) has the Fourier series expansion:

vj(x) =
+∞∑

p=−∞

ξj(p)e2πipx/L, j = 0, . . . , N,

where

ξj(p) =
1

L

∫ L

0

vj(x)e−2πipx/L dx.

Assume that the solution of equation (12) has the form

vji = ξjeiθhi, (14)

where θ = 2πp/L, i2 = −1. Substituting (14) into (13), we obtain

ξj+1
(
rj+1
i (eiθh + e−iθh) + wj+1

i (eiθh − e−iθh) + 1− 2rj+1
i

)
= ξj−

j∑
n=1

(ξj−n+1−ξj−n)δj+1
i (n).

(15)
This simplifies to

ξj+1

(
1− 4rj+1

i sin2

(
θh

2

)
+ 2iwj+1

i sin(θh)

)
= ξj−

j∑
n=1

(ξj−n+1−ξj−n)δj+1
i (n).

(16)
Equation (16) can be rewritten as

ξj+1 =
ξj −

∑j
n=1(ξ

j−n+1 − ξj−n)δj+1
i (n)

1− 4rj+1
i sin2

(
θh
2

)
+ 2iwj+1

i sin(θh)
. (17)
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Theorem 4.1 The implicit FDA (12) is unconditionally stable for 0 < α(x, t) <
1 if there exists C > 0 such that ∥vj∥2 = |ξj| ≤ C∥v0∥2 = C|ξ0|, for
j = 1, 2, . . . , N .

Proof 4.2 We prove by induction. For j = 1, from (17),

|ξ1| =

∣∣∣∣∣ ξ0

1− 4r1i sin
2
(
θh
2

)
+ 2iw1

i sin(θh)

∣∣∣∣∣
=

|ξ0|√
16
[
(r1i )

2 − (w1
i )

2
]
sin4

(
θh
2

)
+ 8
[
2(w1

i )
2 − r1i

]
sin2

(
θh
2

)
+ 1

= C0
i |ξ0| ≤ C|ξ0|. (18)

where C = max0≤i≤M C0
i . Assume the statement holds for j = 1, 2, . . . , N :

|ξj| ≤ C|ξ0|. (19)

Now prove for j + 1:

|ξj+1| =

∣∣∣∣∣ ξj −
∑j

n=1(ξ
j−n+1 − ξj−n)δj+1

i (n)

1− 4rj+1
i sin2

(
θh
2

)
+ 2iwj+1

i sin(θh)

∣∣∣∣∣ (20)

=

∣∣∣ξj −∑j
n=1(ξ

j−n+1 − ξj−n)δj+1
i (n)

∣∣∣√
16
[
(rj+1

i )2 − (wj+1
i )2

]
sin4

(
θh
2

)
+ 8
[
2(wj+1

i )2 − rj+1
i

]
sin2

(
θh
2

)
+ 1

.

(21)

This is

|ξj+1| = Cj
i

∣∣∣∣∣ξj −
j∑

n=1

(ξj−n+1 − ξj−n)δj+1
i (n)

∣∣∣∣∣
≤ Cj|ξj|+

j∑
n=1

(|ξj−n+1|+ |ξj−n|) |δj+1
i (n)|

≤ Cj(2j + 1) |ξ0|

≤ C |ξ0|. (22)

where

Cj
i =

1√
16
[
(rj+1

i )2 − (wj+1
i )2

]
sin4

(
θh
2

)
+ 8

[
2(wj+1

i )2 − rj+1
i

]
sin2

(
θh
2

)
+ 1

.

(23)
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Cj = max0≤i≤M Cj
i , and C = max0≤j≤N−1(2j + 1)Cj, i = 0, . . . ,M, j =

0, . . . , N − 1. Thus, |ξj+1| ≤ C|ξ0| for j = 0, . . . , N − 1, and the scheme (12)
is unconditionally stable.

We use the method of Fourier analysis to discuss the convergence of the
approximate scheme. Define the error as

eji = v(xi, tj)− vji . (24)

Substituting into (13), we obtain

(rj+1
i −wj+1

i )ej+1
i−1+(1−2rj+1

i )ej+1
i +(rj+1

i +wj+1
i )ej+1

i+1 = eji−
j∑

n=1

(ej−n+1
i −ej−n

i )δj+1
i (n)+ϵji ,

(25)
for i = 1, . . . ,M − 1, j = 1, . . . , N − 1, where

ϵji = ϕ2(k)
α(xi,tj+1)Γ(2− α(xi, tj+1))[O(ϕ2(k)) +O(ϕ1(h))].

We define the grid functions:

ej(x) =

{
eji if xi−1/2 < x < xi+1/2, i = 1, . . . ,M − 1;

0 otherwise,

and

ϵj(x) =

{
ϵji if xi−1/2 < x < xi+1/2, i = 1, . . . ,M − 1;

0 otherwise.

Then, ej(x) and ϵj(x) have Fourier series expansions:

ej(x) =
+∞∑

p=−∞

γj(p)e2πipx/L, ϵj(x) =
+∞∑

p=−∞

λj(p)e2πipx/L, j = 0, . . . , N,

(26)
where

γj(p) =
1

L

∫ L

0

ej(x)e−2πipx/L dx, λj(p) =
1

L

∫ L

0

ϵj(x)e−2πipx/L dx. (27)

We have∫ L

0

|ej(x)|2 dx =
+∞∑

p=−∞

|γj(p)|2,
∫ L

0

|ϵj(x)|2 dx =
+∞∑

p=−∞

|λj(p)|2, j = 0, . . . , N,

∥ej∥22 =
M−1∑
i=1

|ϕ1(h)e
j
i |2 =

+∞∑
p=−∞

|γj(p)|2, j = 0, . . . , N, (28)
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∥ϵj∥22 =
M−1∑
i=1

|ϕ1(h)ϵ
j
i |2 =

+∞∑
p=−∞

|λj(p)|2, j = 0, . . . , N. (29)

Assume

eji = γjeiθhi, ϵji = λjeiθhi. (30)

Substituting into (22), we obtain

γj+1
(
rj+1
i (eiθh + e−iθh) + wj+1

i (eiθh − e−iθh) + 1− 2rj+1
i

)
= γj−

j∑
n=1

(γj−n+1−γj−n)δj+1
i (n)+λj.

(31)
Equation (27) can be rewritten as

γj+1 =
γj −

∑j
n=1(γ

j−n+1 − γj−n)δj+1
i (n) + λj

1− 4rj+1
i sin2

(
θh
2

)
+ 2iwj+1

i sin(θh)
. (32)

Theorem 4.3 The implicit FDA (12) is convergent for 0 < α(x, t) < 1 if
∥ej∥2 = |γj| ≤ C∗(ϕ1(h)+ϕ2(k)), for j = 1, 2, . . . , N , where ϕ1(h)+ϕ2(k) → 0
as (h, k) → (0, 0).

Proof 4.4 We prove by induction. For j = 1,

|γ1| =

∣∣∣∣∣ γ0 + λ0

1− 4r1i sin
2
(
θh
2

)
+ 2iw1

i sin(θh)

∣∣∣∣∣
=

|γ0 + λ0|√
16
[
(r1i )

2 − (w1
i )

2
]
sin4

(
θh
2

)
+ 8
[
2(w1

i )
2 − r1i

]
sin2

(
θh
2

)
+ 1

≤ |λ0|√
16
[
(r1i )

2 − (w1
i )

2
]
sin4

(
θh
2

)
+ 8
[
2(w1

i )
2 − r1i

]
sin2

(
θh
2

)
+ 1

. (33)

since γ0 = e0i = v(xi, 0)− v0i = 0.
From the local truncation error, there exists T > 0 such that |ϵ0i | ≤ T (ϕ1(h)+

ϕ2(k)), for i = 0, . . . ,M . Thus,

∥ϵ0∥2 = |λ0| ≤ T
√
L(ϕ1(h) + ϕ2(k)),

and

|γ1| ≤ T
√
L(ϕ1(h) + ϕ2(k))√

16[(r1i )
2 − (w1

i )
2] sin4

(
θh
2

)
+ 8[2(w1

i )
2 − r1i ] sin

2
(
θh
2

)
+ 1

≤ C∗(ϕ1(h)+ϕ2(k)),
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where

C∗ = max
0≤i≤M

T
√
L√

16[(r1i )
2 − (w1

i )
2] sin4

(
θh
2

)
+ 8[2(w1

i )
2 − r1i ] sin

2
(
θh
2

)
+ 1

.

Assume it holds for j = 1, . . . , N :

|γj| ≤ C∗(ϕ1(h) + ϕ2(k)). (34)

Now prove for j + 1:

|γj+1| =

∣∣∣γj −
∑j

n=1

(
γj−n+1 − γj−n

)
δj+1
i (n) + λj

∣∣∣√
16
[
(rj+1

i )2 − (wj+1
i )2

]
sin4

(
θh
2

)
+ 8
[
2(wj+1

i )2 − rj+1
i

]
sin2

(
θh
2

)
+ 1

≤ Cj+1
i

(
|γj|+

j∑
n=1

(
|γj−n+1|+ |γj−n|

)
|δj+1

i (n)|+ |λj|
)
, (35)

Using the induction hypothesis and |ϵji | ≤ T (ϕ1(h) + ϕ2(k)), ∥ϵj∥2 = |λj| ≤
T
√
L(ϕ1(h) + ϕ2(k)), we get

|γj+1| ≤ Cj
i

[
C∗(2j + 1) + T

√
L
](
ϕ1(h) + ϕ2(k)

)
≤ Cj

[
C∗(2j + 1) + T

√
L
](
ϕ1(h) + ϕ2(k)

)
≤ C∗(ϕ1(h) + ϕ2(k)

)
. (36)

after adjusting C∗ appropriately, where Cj
i , C

j are defined as before. Thus,
the scheme (12) is convergent.

Theorem 4.5 The approximate scheme (12) is uniquely solvable.

Proof 4.6 Suppose, for the sake of contradiction, that the tridiagonal matrix
A corresponding to the linear system in (12) at a given time step is singular.

A =


1− 2rj+1

1 rj+1
1 + wj+1

1 0 · · · 0

rj+1
2 − wj+1

2 1− 2rj+1
2 rj+1

2 + wj+1
2

. . .
...

0 rj+1
3 − wj+1

3 1− 2rj+1
3

. . . 0
...

. . . . . . . . . rj+1
M−1 + wj+1

M−1

0 · · · 0 rj+1
M−1 − wj+1

M−1 1− 2rj+1
M−1


(37)
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Then, there exists a non-trivial vector v = (v1, v2, . . . , uM−1)
T such that

Av = 0, with u0 = uM = 0.
Assuming constant coefficients for simplicity (the variable case follows sim-

ilarly via perturbation arguments), we employ the discrete sine transform, suit-

able for Dirichlet boundary conditions. The eigenmodes are given by v
(m)
i =

sin(πmi/M) for m = 1, 2, . . . ,M − 1. The corresponding symbol (Fourier mul-
tiplier) is

1− 4rj+1
i sin2

( πm
2M

)
+ 2iwj+1

i sin
(πm
M

)
. (38)

For the matrix to be singular, this symbol must vanish for some m ∈
{1, 2, . . . ,M − 1}. Setting the real and imaginary parts to zero yields:

1− 4rj+1
i sin2

( πm
2M

)
= 0, 2wj+1

i sin
(πm
M

)
= 0. (39)

From the imaginary part, either wj+1
i = 0 or sin(πm/M) = 0. The latter

implies πm/M = kπ for integer k, so m = kM , which contradicts m < M .
If wj+1

i = 0, the real part becomes 1 − 4rj+1
i sin2(πm/(2M)) = 0, so

sin2(πm/(2M)) = 1/(4rj+1
i ). This requires rj+1

i ≥ 1/4, and the specific match
with the discrete sine values, but as before, the condition sin2(β) = 1/(4rj+1

i )
combined with the imaginary constraint leads to the same contradiction since
it reduces to cases where m/M would need to be an odd integer divided by 2,
impossible for m < M .

Since no such m exists that makes the symbol zero, A has no zero eigenval-
ues and is thus nonsingular. Therefore, the system admits a unique solution
at each time step.

5 Application Results

This section presents a series of numerical experiments designed to validate the
accuracy, convergence, and practical utility of the proposed implicit FDA (12).
We consider several VO time-fractional PDEs and evaluate the performance
of the method by comparing numerical solutions against exact solutions. The
maximum absolute error (L∞ norm) at the final time t = T is used to quantify
accuracy:

E∞(T ) = max
0≤i≤M

∣∣u(xi, T )− uN
i

∣∣ , (40)

where u(xi, T ) is the exact solution and uN
i is the numerical approximation

at the grid point (xi, T ). The numerical convergence rate is computed as:
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Rate = log2

(
E(M,N)

E(2M, 2N)

)
, (41)

with E(M,N) denoting the maximum error for M spatial and N temporal
steps. All simulations were implemented in Python using the NumPy and
SciPy libraries within a Jupyter environment.

Example 5.1 Consider the linear inhomogeneous time-fractional equation (6)

on the domain (x, t) ∈ [0, 1]× [0, 1], with variable order α(x, t) = 2+cos(x+t)
4

and
exact solution:

u(x, t) = x2 + 2
Γ(α(x, t) + 1)

Γ(2α(x, t) + 1)
tα(x,t).

Numerical solutions were computed at T = 1 for various grid sizes with
M = N . Table 1 reports the maximum absolute errors and convergence rates.
The results confirm that the error decreases under grid refinement, and the
scheme achieves a first-order convergence rate, consistent with the theoretical
expectations for the L1-type approximation.

Figure 1 compares the numerical and exact solutions at T = 1 for M =
N = 40, showing excellent agreement. Figure 2 displays the surface plot of the
absolute error, which remains small throughout the domain.

Table 1: Maximum absolute errors and convergence rates for Example 1 at
T = 1.

M = N ϕ1(h) E∞ Rate
10 1.00E-01 8.52E-03 –
20 5.00E-02 4.31E-03 0.98
40 2.50E-02 2.17E-03 0.99
80 1.25E-02 1.09E-03 1.00
160 6.25E-03 5.46E-04 1.00
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Figure 1: Comparison of numerical and exact solutions for Example 1 at T = 1
with M = N = 40.
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Figure 2: Surface plot of the absolute error for Example 1 at T = 1 with
M = N = 40.
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Example 5.2 We now apply the scheme to the one-dimensional linear in-
homogeneous FO Burgers’ equation (6) on (x, t) ∈ [0, 1] × [0, 1], with VO

α(x, t) = sin2(xt)
4

and exact solution u(x, t) = x2 + t2. Table 2 presents the
maximum absolute errors and convergence rates at T = 1. The scheme again
exhibits stable behavior and first-order convergence.

Figure 3 shows surface plots of the numerical and exact solutions at T = 1
for M = N = 50. The surfaces are nearly indistinguishable, confirming the
high accuracy of the method.

Table 2: Maximum absolute errors and convergence rates for Example 2 at
T = 1.

M = N ϕ1(h) E∞ Rate
10 1.00E-01 6.14E-03 –
20 5.00E-02 3.09E-03 0.99
40 2.50E-02 1.55E-03 1.00
80 1.25E-02 7.76E-04 1.00
160 6.25E-03 3.88E-04 1.00
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Figure 3: Surface plots of the numerical (left) and exact (right) solutions for
Example 2 at T = 1 with M = N = 50.

Example 5.3 To test the robustness of the scheme for constant-order prob-
lems, we consider the time-fractional diffusion equation with constant order
α(x, t) = 1/4 on (x, t) ∈ [0, 1]× [0, 1], and exact solution:

u(x, t) = 10x2(1− x)(t+ 1)2.
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Table 3 summarizes the numerical errors and convergence rates at T = 1,
which again confirm first-order convergence. Figure 4 illustrates the evolution
of the solution profile at t = 0.2, 0.6, 1.0, demonstrating that the numerical
solution accurately captures the diffusion process over time.

Table 3: Maximum absolute errors and convergence rates for Example 3 at
T = 1.

M = N h E∞ Rate
10 1.00E-01 1.25E-02 –
20 5.00E-02 6.32E-03 0.98
40 2.50E-02 3.18E-03 0.99
80 1.25E-02 1.59E-03 1.00
160 6.25E-03 7.97E-04 1.00
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Solution Profiles for Example 3 at Different Times (M = 40)

Exact, t = 0.2

Numerical, t = 0.2

Exact, t = 0.6

Numerical, t = 0.6

Exact, t = 1.0

Numerical, t = 1.0

Figure 4: Comparison of numerical and exact solution profiles for Example 3
at t = 0.2, 0.6, 1.0 with M = N = 40.

The numerical results from all three examples support the theoretical anal-
ysis, confirming that the proposed implicit FDA is a reliable, stable, and con-
vergent method for solving VO time-fractional convection–diffusion equations.

Example 5.4 Consider the linear inhomogeneous time-fractional equation:
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
∂αu

∂tα
+

∂2u

∂x2
+ x

∂u

∂x
= 2tα + 2x2 + 2, 0 < x < 1, t > 0, 0 < α < 1,

u(0, t) = 2tα
Γ(α + 1)

Γ(2α + 1)
, u(1, t) = 1 + 2

Γ(α + 1)

Γ(2α + 1)
tα,

u(x, 0) = x2,

with variable order α(x, t) = 2+cos(x+t)
4

. The exact solution is:

u(x, t) = x2 + 2
Γ(α + 1)

Γ(2α + 1)
tα.

We choose the denominator functions:

ϕ1(h) = eh − 1, ϕ2(k) = sin2(k),

and define the grid points:

xi = iϕ1(h), i = 0, 1, . . . ,M ; tj = jϕ2(k), j = 0, 1, . . . , N.

The numerical scheme is implemented as described in (12). Figure 5 shows
snapshots of the numerical and exact solutions, demonstrating good agreement.
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1e107 (4) Numerical vs Exact Solution
num t=0.2500
exact t=0.2500
num t=0.5000
exact t=0.5000
num t=0.7500
exact t=0.7500

Figure 5: Numerical vs. exact solution snapshots for Example 4.

Example 5.5 We now consider the one-dimensional linear inhomogeneous
fractional Burgers equation:
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
∂αu

∂tα
− ∂2u

∂x2
+

∂u

∂x
=

2t2−α

Γ(3− α)
+ 2x+ 2, 0 < x < 1, t > 0, 0 < α < 1,

u(0, t) = t2, u(1, t) = 1 + t2,

u(x, 0) = x2,

with variable order α(x, t) = sin2(xt)
4

and exact solution u(x, t) = x2 + t2.
We choose:

ϕ1(h) = h2eh, ϕ2(k) = k2 sin2(k),

The numerical scheme is given by (12). Figure 6 compares numerical and
exact solutions.
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Figure 6: Numerical vs. exact solution snapshots for Example 5.

Example 5.6 We consider the variable-order time-fractional diffusion equa-
tion: 

∂αu

∂tα
− ∂2u

∂x2
= f(x, t), 0 < x < 1, t > 0, 0 < α < 1,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 10x2(1− x),

with constant order α(x, t) = 1/4 and source term:

f(x, t) = 10x2(1− x)

[
t2−α

Γ(3− α)
+

t1−α

Γ(2− α)

]
− 20(t+ 1)2(1− 3x).

The exact solution is u(x, t) = 10x2(1− x)(t+ 1)2. We choose:
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ϕ1(h) = h, ϕ2(k) = 2(ek − 1),

Figure 7 shows snapshots of the numerical and exact solutions.
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Figure 7: Numerical vs. exact solution snapshots for Example 6.
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