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Abstract

Studies involving orthogonality of operators is an area
with various applications with regard to the ever dynamic and
emerging technological research outputs. In mormed spaces
(NS) there are different types of orthogonality. Useful results
have come up where operators possessing given conditions are
chosen for Range-Kernel orthogonality to be established. How-
ever, most of the results have been focussing on one type of
orthogonality called the Birkhoff-James which we have given
more results on. In this paper we give results on various no-
tions of orthogonality by considering certain geometrical as-
pects in NS.
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1 Introduction

Studies involving geometrical aspects of NS have been given considerations
over decades by mathematicians. A lot of different operators have also been
involved and their properties unveiled. The authors of [6] employed approxi-
mate proper vectors in the analysis of normal operators. When the spectrum
of a normal operator is non-empty, its study can be reduced to the elementary
case of self-adjoint operators. In [7], it was shown that every quasi-normal op-
erator is subnormal and that every normal operator is paranormal. The work
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in [15] further explored properties of both paranormal and normal operators
and provided conditions for extending related concepts. In [4], the backward
extension problem for subnormal weighted shifts was generalized to subnor-
mal operators, while [9] later developed a structure theorem for p-paranormal
operators. Another line of investigation by [13] introduced the concept of
square normal operators and examined their spectral characteristics. For dis-
tinct eigenvalues z and w of T with respective eigenvectors a,b € H, it was
established that (a,b) = 0. In addition, [11] demonstrated that 7" is normal
whenever there exists a continuous function f on the relevant set.

The work of [66] on range kernel orthogonality for derivations implemented
by normal operators using Birkhoff-James (BJ)- orthogonality formed a cor-
nerstone for our study. They recommended extending this research to other
types of orthogonality and exploring adjoints of derivations induced by nor-
mal operators [67]. Accordingly, our work focuses on various orthogonality
concepts in connection with range and kernel properties for derivations and
the Fuglede Putnam (FP)-property. To broaden the scope, we also investigate
how normal operators influence properties of the derivations they induce. The
foundational concepts summarized below provide the basis for our results.

With the advancement of operator theory and quantum theory, derivations
have become an essential analytical tool on spaces, particularly Hilbert spaces.
It is well known that derivations may be inner or generalized [17], and many of
their properties are discussed in [19]. Their norms and derivation ranges were
studied comprehensively in [18]. The kernels of derivations were further exam-
ined in [20], which focused on structural properties of elementary operators,
while [21] later analyzed generalized derivations and their numerical ranges.
Moreover, [24] provided a detailed study on kernels of generalized derivations.

The study in [26] revealed that the norm-closure of the range of inner
derivations always contains lower triangular compact operators. Furthermore,
derivations on commutative von Neumann algebras are induced by bounded
operators, and similar results hold for non-self-adjoint commutative algebras
via similarity. In [27], spatial derivations on *-algebras were characterized
using positive linear functionals. The authors of [46] investigated properties
of inner derivations strictly implemented by norm-attainable operators and
determined corresponding norms. In [28], formulas were given for approximat-
ing the norms of dr g, showing that this derivation is bounded and compact
whenever 7" and S are compact.

The Fuglede Putnam theorem relates properties of arbitrary operators to
those of normal operators. Fuglede showed that for bounded S and normal N,
if S commutes with operators T, i.e., ST; = T;S, then S also commutes with
any function of N [29]. For the case of unbounded operators, commutativity
may fail, and several authors have studied asymptotic forms of the Fuglede
theorem. Further extensions were made by researchers in [2], who analyzed
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Fuglede Putnam results for various classes of operators.

In [33], it was proved that for a pair (T, S*) satisfying the FP-property, any
C € ker o5 N B(H) satisfies |0rs + C| > |C|, and moreover T?X = X S? and
T3X = XS3. In [34], it was shown that a quasi-normal and normal operator
is normal and unitarily equivalent. In [36], the FP-theorem was extended to
(p, w)-normal operators, while [3] later examined the FP-property for N-class
A(k) operators, including range kernel results for the generalized derivations
they induce. Furthermore, [37] provided a complete characterization of left-
symmetric points under strong Birkhoff orthogonality. In [38], relationships
between two functionals and the existence of b-Birkhoff orthogonal elements in
two-normed linear spaces were established. The work of [39] generalized prop-
erties of j-orthogonality, examined their relationship with metric projection in
smooth uniform complex normed spaces, and characterized the j-orthogonal
complement.

Several authors introduced orthogonality concepts in Banach spaces that
generalize classical Hilbert-space orthogonality. Such notions are vital, as they
allow eigenvectors associated with eigenvalues to serve as basis elements of
Hilbert spaces. In [40], the authors characterized inner derivations with respect
to orthogonality for normal operators and established range kernel orthogonal-
ity for inner derivations in the sense of [43]. In normed spaces, [42] showed
that Birkhoff orthogonality is equivalent to best approximation, highlighting
its significance. Range properties of derivations were discussed in [41]. Our
investigation extends these ideas by interpreting derivations as projections,
forming a basis for orthogonality relations. We also incorporate other forms
of orthogonality beyond those previously mentioned.

Operators in R(dr), where d7 is an inner derivation induced by 7', were used
in [44] to show that elements of R(dr)NT" (the commutant of T') are nilpotent
whenever P(T) is normal, isometric, or co-isometric for some polynomial P.
Normal operators form a broad class encompassing many subclasses. Range
kernel orthogonality conditions for such classes have been derived using mini-
mization techniques, the power norm inequality, and compactness arguments.
In particular, [45] obtained approximation results for paranormal operators,
which were then applied to orthogonality problems.

The present work focuses on derivations induced by normal operators. Nor-
mal operators possess properties related to spectrum, boundedness, invertibil-
ity, and density, as discussed in [47]. Similar properties hold for derivations
induced by such operators. These derivations may be inner or generalized, as
examined in [48], while their ranges were studied in [50]. Orthogonality for
these derivations has been considered in [51] and extended to linear functionals
in [30]. In [52], range kernel orthogonality for these derivations was analyzed.

Certain commutants that intersect with closed derivation ranges include
normal operators, as shown in [23] in the context of normal derivations, isome-
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tries, cyclic subnormal operators, and Jordan operators. The results of [22]
established that when the range of a derivation is closed, its intersection with
its kernel is trivial whenever the associated operators are normal. In [25], it
was shown that the adjoint of the kernel of a derivation is zero provided that
the involved polynomial satisfies the Fuglede Putnam property, a result later
extended to o7 g. This motivated our interest in the behavior of derivations
under normality assumptions.

A comprehensive summary of relationships between different orthogonal-
ity concepts is given in [53], including symmetry [54], homogeneity [31], and
additivity ([56] [55]). These studies established range kernel orthogonality for
elementary operators under unitary invariant norms [60]. In [62], the notion of
orthogonal mappings in isosceles orthogonal spaces was introduced. The stabil-
ity of orthogonally constant mappings was established, and BJ-orthogonality in
weak C*-algebras was characterized. Further investigations examined domain
sets, dual target spaces, and orthogonality with respect to operator norms and
numerical radius norms.

Berberian obtained a FP-theorem for operators whose adjoints are normal,
under the additional condition that one of the operators belongs to the Hilbert
Schmidt class. Later, [1] proved that if X is Hilbert Schmidt and TX = XS,
then T*X = X S*. A similar conclusion holds when T, S* € B(H) are injective
and X is arbitrary, as shown in [32]. Some authors showed that Berberian s
result can be achieved without restrictions on X. The work of [10] on derivation
ranges highlighted gaps and facilitated our analysis of connections between FP-
properties and range kernel orthogonality for derivations induced by normal
operators. These generalizations have been instrumental in linking normal
and normal operators [35], thereby simplifying their study. Consequently, we
extended these ideas to the derivations they induce.

The authors of [61] studied isosceles and BJ-orthogonality for positive linear
operators, analyzing their interrelationships. They noted that BJ-orthogonality
encapsulates essential features of smooth norms in reflexive Banach spaces and
is relevant to determining dimensions of NS. The study also characterized right-
symmetric and left-symmetric operators under this notion of orthogonality.

In [63], it was shown that certain linear operators strongly preserve reverse
orthogonality, and conditions for orthogonality were characterized. The uni-
tary Carlsson orthogonality was introduced to characterize real inner product
spaces, along with the concept of Birkhoff orthogonal sets.

Several authors defined a new orthogonal geometric constant (X)), based
on the parallelogram law and isosceles orthogonality. In normed spaces, this
constant equals one when the norm arises from an inner product. It has also
been shown that orthogonality is preserved in Krein spaces [64], where four
types of orthogonality were studied. In particular, [65] examined approxi-
mate symmetry and its relation to geometric properties of the space X. The
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authors of [12] introduced a new class of operators termed D-normal and D-
quasi-normal, and outlined their fundamental properties. In [14], the notion
of normality was examined, and its equivalence to an operator S under iso-
metric conditions was established, together with the concept of unitary quasi-
equivalence. The study in [15] also defined quasi-normal operators on Hilbert
spaces as a unifying extension of paranormal and k-quasi-paranormal classes,
presenting matrix representations for such operators. In [16], it was shown that
normal operators satisfy various forms of Weyl s and Browder s theorems. It is
clear from these studies that the geometrical aspects including orthogonality
in Ns have not been exhausted. In this work we continue our work in the same
spirit.

2 Preliminaries

At this point, we discuss some useful definitions to this work.

Definition 2.1 ([7]) If a vector space V is given over any field of real
scalars R, then the the function which is positive and real valued that takes
vectors to real scalars represented by ||.|| is referred to as a norm if it obeys the
following conditions:

(i). Positive definite: ||a|| >0, Va €V,
(ii). Zero property : ||a|| =0 iff a=0,Va eV,
(#ii). Homogeneity: ||Ball = |B|||al|, Va €V, and p € R,

(w). Triangle inequality: |la + b|| < |lal| + [|b]|, ¥V a,b € V.
We provide preliminary concepts that are key to the study.

Definition 2.2 (/58], Definition 2.2) Two maps on a vector space are con-
sidered orthogonal with regard to a specific inner product if their action on any
pair of vectors a and b in that space results in the inner product of their images
being zero, expressed as (Ta, Sby = 0.

Definition 2.3 ([59/, Definition 3.1) A mapping S € B(H) is hyponormal
if (SS*)P —(S*S)P >0 andp=1.

Definition 2.4 ((/9], Definition 1.4) A mapping D is an inner derivation
if it satisfies the Leibnitz rule for all vectors in its domain, that is, D(¢¢) =
(Do) + (Do) where ¢ are vectors in the domain of D and all vector ¢ in
the Hilbert space H.
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Definition 2.5 (/6], Definition 1.2.1) T has Fuglede-Putnam property if
SC =0CS8S, then TSC = SCT for some self-adjoint maps C' and S. It suggests
that if two self-adjoint operators commute (product and order do not matter),
then when one of this operators is multiplied by a third self-adjoint operator,
the order of multiplication still does not matter.

3 Research methodology

In this study, we used some fundamental principles and known results that are
deemed useful to execute our tasks. Several technical approaches have been
employed and the known results which are useful to our study utilized.

3.1 Known fundamental theorems

Lemma 3.1 ([50]). Let any two non empty sets W and S be bounded in the
plane and o € U, B € V then Ity (positive number) thenty € bndry(W), Bty €
S or, ty € W, Bty € bndry(S).

Lemma 3.2 ([16]). For some operators X A, and B, if bounded, it holds

that TI¥_, s (X7, AX B) < TIF_,s? (Ax) si(B*)sfHﬂ](X).
N

Theorem 3.3 (/64]). For everyn € N and a > 0, the following inequality
holds: Yy s (Jo CX Ddp) < X% (Jo, C|X*PP7Cdp) s¢ (fo D*|X | D*dps) .

Theorem 3.4 Fuglede-Putnam Theorem ([/]). Let A€ C™ Q€ C™
and T € C™ where C™ is a set comprising of all complex matrices. If R and
Q) are normally represented and RT = TQ), then R*T = TQ*.

Theorem 3.5 Fuglede-Putnam Theorem ([57]). A € C™ and B €
C™, where C™" is a set comprising complexr matrices, then AB and BA are
normal if and only if A*AB = BBA* and ABB* = B*BA.

Proposition 3.6 (/14)). If A, B,C, D are normal operators, then
(i). The sum of normal operators is normal. I.e, A+ B is normal

(ii). The product of any normal operators is normal. Ie, AB is normal.
Similarly C x D are normal operators.

Theorem 3.7 ([20]). Any two definite sequences with m-tuples power have
the property that >}, ay, b = 0.

In the next part we give the technical approaches which are very instrumental
to this work.
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3.2 Technical approaches

Tensor products: Any space containing all linear maps taking elements from
the cross product of X and Y to another vector space Z is naturally isomorphic
in relation to a space containing linear maps from the tensor product to another
space. This is a construction; X ® Y to Z which will be linear [21].

Theorem 3.8 (/66]). For any two vector spaces X and Y over a field K
there exist a tensor product X ® Y with a canonical bilinear homeomorphism
distinguished up to an isomorphism by the following universal properties: Every
bilinear homeomorphism ¢ : X xY — Z lifts to a unique homeomorphism,

and ¢ : X QY — Z.

Orthogonal direct sum: Let{M,;};c; be a collection of closed subspaces of
H such that M; LM; whenever i # j [62]. Then the orthogonal direct sum of
the M; is the smallest closed subspace which contains every M;. This space is
Dier = span(Uier M;)

Splitting lemma: Let A = A;+As+...4+ A, and B = B1+By+...+B,. Ifall 4;
and B; are symmetric positive semi-definite and if for each i, A; is in the range
of B; then o(A, B) < maz;0(A;, B;). The splitting lemma is normally used
for decomposition of a matrix A into the sum of rank-one matrices with each
corresponding to one off-diagonal and by decomposing B into path matrices
[34].

2 -1 -1 1 0 1
Example 3.9 Let A=| -1 2 -1 |, U=|-1 1 0 |,B-=
-1 -1 2 1 -1 -1
1 -1 0 1 0
-1 2 =1 |andV =] —1 1 | to have U and V' complete to a triplet
0o -1 1 0 1

1 01
011

W2 = V3. by choosing € = == it yields, |Wly = 2. We use splitting to

which 1s symmetric we shall have that W = ( ) then the 2-norm of

N V2
achieve |W ||y = [|[W]l2 = /3.
L'oo0 o0 2.0
Let S = 3 - 3 - | So
0 00 i o /2
V3 0 0 V3
0 0 0 0
0 0 0 0
V3 V3
0 0 8 =8

The W is shown without zeros to emphasize the structure of its columns [8].
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Frobenius Heuristic : Let W be a matrix and M a diagonal matrix s.t (¢, j)
the value in the j-matrix will be given by:

Example 3.10 Frobenius Heuristic minimizes |W||p over all fractional
splittings of W. To illustrate this, we already know that each row is mini-
mized to |W||r Vi,j € W, are non zero elements of the vectors D’ W, for
j=1,..m. The zth element of this vector (Dj )iiWij is (D+)”VV” given
that I/V” = 0, so we have that (D+)“Wm = 0, otherwise (D )W;;W;,; =

(Vgg?, On the second part, it follows that by breaking the minimization prob-
¥

lem wnto k-independent sub-problems. It can be seen that > 7", 22 = 1. Let
@1, o, A) = S5 ()7 + MXZJL, @ — 1), The manimizer satisfies
J

7=1
5 2
0= _ —2.5 4o,
ox; T
l

ij—l

then it follows that C? = Ax'i, therefore z? = % Since 3070, i) =1, it
follows in [58] that

o

il

Zm: |

5\

7j=1
and hence,
1 m
= Z |c\ =1
Vo=
and so’

Now, we have that z? = |\f so it follows that,

and thus
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4 Main results

In this section we give results of our study. We begin with geometrical aspect
and FP-property. In particular we consider derivations as our operators.

Proposition 4.1 Suppose that C,D € Gy (H), then the derivation dc p is
bounded from above for allY € Gy (H).

Proof. Let C, D and Y be induced by c,, d, respectively and f, be arbi-
trary elements of B(H). By definition of §, we have for [||e,f.||?] = 1 and

lenfull < 1 that [[0cpl® = llea(cafn — fadn)l? < llencnfall® + lenfadnll® <
lenlenl?+enldnl2]ll€ntnll?] = [€nlcnl? +€nldn|?] [€n]cn|+€n|dn|]. Taking the supre-
mum of both sides of the inequality gives us ||6¢.p(Y)|| < [en]cn]?)2 + [enldn]?]2.

By considering normal operators we give some geometrical aspects involv-
ing F'P-criterion.

Lemma 4.2 FEvery derivation is bounded from below

Proof. By definition of d¢ p, we see that dcp(Y) = ¢, — d, for the bases

¢, and d,, of C and D respectively with €,| f.||> = 1. Since ¢, and d, are

bounded, from the definition of dc p(Y), we have ||dcp(fu)ll* = llen(cnfn —
Fod))? = enllenfall? — €nll fudnll? = [enlenl® — €nldnl?]|| fo ]| Since the difference
of finite summation of ¢,, and d,, is also bounded, and clearly, ||3,| > [e,|cal?] —
[€n|dn|2]%-

Lemma 4.3 The FP-criterion suffices for all derivations implemented by
normal operators.

Proof. 1t is known from [9] that
5c(XY) = CXY — XYC. (1)

Now,

5p(XY)=DXY — XYD (2)

subtracting Equation 2 from Equation 1 we have:
0c(XY) —0p(XY)=CXY — DXY — XYC + XYD
= (0¢ —0p)(XY) = (C - D)XY — XY (C - D)
= (0c — 0p)(XY) = 6c-p(XY)

= 0c —0p =0dc_p
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which is a derivation. The converse is true, that is if J is a derivation in Gy (H)
then their exists C' € Gy (H) such that § = d¢.
Conversely, suppose for C, D € Gy (H), we have dc = dp, then this implies

d¢ —0p=09c-p=0
Hence for all Y € Gy (H), we have
So_p(Y)=(C—D)Y —Y(C—D)=0

= (C-D)Y =Y(C—-D)
Setting C' — D = E We have EFY = Y E implying £ = A\I thus

C—D=XN=D=C-)I

On the other hand, if D = C' — A, then by applying derivation on both sides,
we have:

op(Y) =dc-ar(Y)
= DY —YD=(C—=AN)Y —Y(C— )
=DY -YD=CY-XNY -YC+Y\
= DY -YD=CY -YC
= dp = dc. (3)

It has been shown in [30] that the identities dc+dp = dc1p, 0cdp —dpdc =
dcp—pc indicate that the sum and Lie product of two inner derivations is a
derivation. However, the product dcdp is a derivation only in trivial cases.

Theorem 4.4 FEvery finite rank normal derivation is linear and bounded.
Proof. For linearity, let X,Y € Gy (H), then for scalars a, f € C. We have
de(aX + YY) =C(aX + BY) — (X + BY)C (4)

=aCX —aXC+ pCY — Y C
=a(CX - XC)+ 5(CY —=YC)
= adc + Boc(Y)

Hence d¢ is linear. But a derivation is a linear map 6 : Gy (H) satisfying the
leibniz rule:

5(XY) = 8(X)Y + X5(Y) (5)

and is 0 : Gg(H) = Gg(H) is a derivation, then their exists C' € Gy such
that 6 = d¢. Thus
Ic(XY) =0c(X)Y + Xoc(Y)
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= 6o(XY) = (CX — XC)Y + X(CY —YC)
But C is finite implying existence of I € Gy (H) such that

ICX —XC —1I|>1

and
|ICY —=YC —-1I||>1

and hence from line 1, we have
[6(XY)[| < [[CX=XC=I[|[Y|+[X[ICY =Y C=I]| = [|oc(XY)]| < [Y][+][X]]
Thus their exists a positive integer n € N such that

[6(XY)[| < n. (6)

Corollary 4.5 Let C,D be a normal operators. Then §(C) = ||D] if
o(C) = | DI

Proof. Suppose that §(C) = ||D||. We have [y,], in H with ||y,|| = 1 for
each n and such that < Cy,,y, >— 0 and ||Cy,|| — [|C] as n — a. So <
DRy, Ry, >— 0 as n — a. Moreover, since |Ry,| — 1 and || DRy,| — ||D||
asn — a. Also, 0(D) = ||D||. Conversely, suppose that 6(D) = || D||. We have
Rp = ||D||. Since o(D) C o(C), then Np < R(C). We obtain ||C]| < Re¢.
Hence §(C') = ||C|| which completes the proof.

Next we consider universality as geometrical property of operators.

Proposition 4.6 Fvery normal operator is S-universality.

Proof. Since S-universality and normality are preserved under translations,
we may assume that §(C) = ||C|| and hence 6(D) = ||D||. Suppose that T
is S-universal. By [47], we have; 02| = |0c|| = 2||C|| = 2||D|| = ||ép]|-
Consider [y,], in Co(H) with [|y,|lo = 1 for which [|Cy, — y,C|| — 2||C|| as
n — a. Since, [|Cyn = ynClla < |Cynllz + [[ynCll2 < [|Cf] + [lyaCll2 < 2| C.
We deduce that, ||Cy,|l — ||C||. Similarly, we get ||Y,C|l2 — ||C||. Now,
from the identity [|Cy, — yaCl3 = [[Cynll5 + 1ynCl3 — 2R(< Cyp, yuC >),
we conclude that —R(< Cy,,y,C >) — ||C||* as n — a where R denotes
the real part. Consider the operator Ry,R* € L(H). Since y, € Cy(H)
and ||y,|| = 1, then Ry,R* € Cy(K) and ||Ry,R*||z < 1. Furthermore, <
NRy,R*, Ry,R*D >= tr(DRy,R*(Ry,R*D)*) =< Cy,,y,C >. Hence R(<
DRy, R*, Ry,R*D >) — —||D||* as n — «. Since |R(< DRy, R*, Ry, R*D >
)| < IDRyaRIPIRyaR*Dll; < ID|%, and so [DRy.R*ll2 — D], > —
|Ry,R*D||y — ||D| as S — a. Whence we infer ||dop(Ry,R*)|2 — 2| D||
as n — «a. That is ||d2p|| = 2||D||. Since D is normal, it is guaranteed
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that diam(o(D)) = ||62(D)]|. On the other hand, we see that diam(o(D)) <
diam(a(C)) < ||02,p]| < 2||D||. Therefore, diam(c(C)) = 2||D| = 2||C|| =
2R¢. The sufficient condition follows trivially.

Next we consider isoloidity as an instrumental property.

Lemma 4.7 FEvery normal derivation satisfies isoloidity criterion.

Proof. If X € isoo(dcp), then 0 € isoo(dcp — A). Now lim, o ||(dcp —
A)"z11|[* = 0. The operator C; and Dy + A in dcy (D4 = Ocip, — A being
normal,

Limusoc || (3¢, (D1 + A"z ||+ ¢ (8¢, (D1 + A) 211 = 0).

That is if and only if 0 is an eigenvalue of ¢, (D1+)\). Now (dcp—A)z11D0 = 0.
In the case in A # —1, then

P = (1))

T21

or
( T11 19 > c B(H) . (ACD — )\):1: = (bID(x)
x91 O
or

¢ep(x) =0

Thus, if 0 € isoo(dcp) then P(B(H)) = d55(0). So, dcp = dcyp, D d¢, b,
where d¢,p, is nilpotent and d¢, p, is invertible.

Remark 4.8 Operators satisfying isoloid property fall in several subclasses
of other operators like normal, hyponormal, subnormal and compact which are
key properties.

Now we consider FP-property. We start by giving a key relationship.
Normal C M — normal C dorminant and normal C p — normal C w —
normal. We consider a result on this relationship.

Proposition 4.9 Let C be M-normal and let D* be w-normal operators in
B(H). Then éc.p(X) = 0 entails c« p- = 0. Moreover, it satisfies the unitary
property.

Proof. Invariant subspaces for C and D are Fan(X ) and (ker(X))* respectively

B . o Cl 02 o Dl 0
because dcp(X) = 0. We can write C' = ( 0 C ) ., D = <D2 D )
X; 0
0 O

Fan(X) @ ran(X)t, H = Hy = (ker X)* @ ker X. From o p(X) = 0, we

and X = : Hy — H; under the decompositions H = H; =
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get C1 X7 = X1D; where C is M-hyponormal and D; is w-hyponormal. Let
C1X; = Xq|Dy|U. Multiplying the two sides of this equation at right by
|D¥|2, we obtain Cy(X,|D?|2) = X1|D:|U|Dt|2 = (X1|Dt|2D;). The Alugthe
transform D} of D is semi-hyponormal. Hence the pair (C, D}) satisfies

the FPP. Thus, the restriction Cl‘fan(X D) and Dﬂker(X DrjhyL 8T€ equiv-
1 1 1 1

alent normal operators. Since X; is a quasi-affinity and \Dﬂ% is injective,
Fan(X1|D3|2) = fanX; = rfanX and ker(X;|D:|2) = ker X; = ker X. The
operator D* and its restriction D} on (ker X)* is normal. Consequently, ker X
reduces D*. Hence D, = 0. Similarly, C'is M-normal and its restriction C; on
ranX is normal. Then FanX reduces T'. Thus T; = 0. Since the pair (Cy, D)
satisfies FP-property, C7X; = X;Dj. Finally C*X = X D*.

Lemma 4.10 Every (p, w)-normal operator and a p-normal operator satis-
fies FP-Property.

Proof. FP-Property holds for Consider H = Hy = (ker C)* @ (ker C), H =
Hy = (ker D*)* @ (ker D*). From equation CX = XD, we get C;X; =
X1D; and 41Xy = X3D; = 0. Since C; and D; are one to one, Xy, =
X3 = 0, C4 is a one to one p-normal operator. Let C; = U|C}| be the
polar decomposition of ;. Equation above can be written as U|Ci|X; =
X1D;. Multiplying the two sides of this equation on the left by |C’1|%, we
get |C1]2U|C|3|C1 ]2 X, = |C1]2 X Dy So C1(|C1|3Xy) = (|C1]2X1)Dy. The
Alugthe transform Cy of Cy is § — hyponormal and D7 is p-normal. The pair
(Cy, Dy) satisfies the FP-propery. Thus, C3(|Cy|2X:) = (|Cy|2X1)D;. Con-

sequently, restrictions C’1|ﬁm (e dx) and D1|ker (cadyL 2Te unitarily equivalent

normal operators. Since the operator |C’1|% and X; are one to one, the opera-
tor |Cy|2 X1 so is. Thus, (ker(|C1[2X1))* = [0]F = (ker X1)* = (ker X)* and
Fan(|C12X,) = (ker(|Cy]2X1))* = [0]f = Fan(X,) = Fan(X). Thus, Cy is
a normal operator. The operator Cy so is. Therefore, FanX reduces C and
(ker X;)* reduces Dj. Since C is normal and D is p-normal, the FP-property
holds for the pair (Cy, D). Thus, C;X; = X, D7 and then C*X = XD*. The

converse is true since pair (C, D) satisfies FP-Property.
Theorem 4.11 FEvery (p,w)-normal operator is a log-normal operator.

Proof. Let the restriction C|; be log-normal. This property helps us to prove
this theorem in the sequel. Let Dy = U|Dq| be of D;. C1X; = X;|Di|U.
Multiplying the two sides of this equation on the right by |D{|%, we get,
Cy(Xy|Di|2) = (X1|D5|2)|D5|2U|D5 |2 = (X1|D;|2)D; Cy is p-w-normal and

the Alugthe transform D7 of D7 is %-hyponormal.By theorem above, the FP-

property holds for the pair (Cy, D?). Hence CF(Xi|D}|z) = (Xi|D}|2)D3.
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Further more, Cl|mn (Db and Dj| (xu|Dijhyd BT unitarily equivalent nor-

mal operators. Since |D}|z and X, are one to one, the operator (X;|D|2) so
is.

Theorem 4.12 FEwvery injective derivation is normal for some positive op-
erator X.

Proof. Let decompositions H = (ker X)* @ ker X and K = ranX @ (ranX)*
be considered. Then we have the following matrix representations: C' =
( g; 003 >, D = ( l())l g; ), X = < )él 8 > where C} is p-normal, D,
is injective (p, k)-quasi-normal and X; is injective with dense range. There-
fore, we have X Ciz = XCz = DXx = DXz for x € (ker X)*. That is,
X:C1 = D1 X; and hence ¢ and D; are normal and X;CT = D7X; by the
FPP. (ker X)* and 7fanX reduces C* and D respectively. Hence, we obtain
XC* = D*X. Therefore we recapture a generalized FP-property for p-normal
operators.
The theorem can be proved for generalized scalar operators.

Corollary 4.13 Normal derivations and their adjoints are orthogonal via
F'P-property.

Proof. Let C' € B(H) and D € Q(K) be positive and normal and H C H,
KCK,

and (
Define Y : K — H by
It can be seen that

for all n, hence
: oL
lim, ||0¢, 5 (Y)||" = 0.
The rest follow trivially.
Now we consider the range-kernel orthogonality of normal operators in
complex NS.
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Proposition 4.14 Let C, D, N € B(H) where N has the polar decompo-
sition N = U|N|. Then the pair (C,D) € FPP(6(N)) and

(i). [C,IN*]=0.
(ii). [D,|N|] = 0.
(iii). ¢.p(U) = 0.
Proof. If N € ker(d¢.p) and (C, D) € FPP(5(N)), then
den(N) =0=d¢+p-(N) (7)

and so let
D :ker N(=kerU) — ker N

Hence
dep(U) =0

Since FanN reduces C (by (i)) and ker™ N reduces D by (ii), it follows from
dc,p(N) = 0 that 0¢, p,(N) = 0 where C; = Clrann

Dy = D‘keriN

and the quasi-affinity
Ny : kert N = FanN

is
N19$' =Nz

Let N; have the polar decomposition
Ny = Uy| Ny
then Uj is a unitary and |N;| is a quasi-affinity. Clearly
[D1,|D:]] =0 (8)

Hence, Sé¢,p,(N1) = 0 implies that d¢, p,(U;) = 0, that is

D, =U;
Thus,
DY|Ni| = [N| DY
implies
Ut CTUL Ny | = [N, | DY
or

dcrps(N1) =0
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This implies that
Scepe(N) = 0. (9)

Theorem 4.15 FEvery normal derivation is BJ-orthogonal via F'P-property.

Proof. Since FP-property gives orthogonality in a general set-up, then by
Proposition 4.14, the proof follows trivially.

5 Open Problems

Characterizations involving orthogonality of operators is an area with various
applications with regard to the ever dynamic technological advances. In NS we
are different types of orthogonality. Useful results have come up where opera-
tors possessing given conditions are chosen for Range-Kernel orthogonality to
be established. However, most of the results have been focussing on one type
of orthogonality called the Birkhoff-James which we have given more results
on. The following question arise always naturally however we ask them in our
context: Problem 1: Could there be a possibility for studying other types
of orthogonality with respect to the range and the kernel of norm-attainable
operators apart from the BJ-orthogonality? This problem has been partially
solved by other authors. Problem 2: Can the orthogonality be obtained via
CBS-inequality be deduce in the space of norm-attainable operators?
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