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Abstract

This paper investigates a specific class of integrals that pro-
duce interesting results, including evaluations involving funda-
mental mathematical constants. Rigorous proofs are provided,
and several directions for future research are proposed.
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1 Introduction

Classical integral formulas have long played a central role in analysis and its
applications. The most notable examples are collected in [7], although these
are presented without proofs. In recent years, several authors have revisited
and extended these results. Notable developments and related contributions
can be found in [8, 9, 10, 11, 2, 5, 1], where various extensions, refinements,
and applications of such integrals have been systematically explored.
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Inspired by this line of research, the present study explores a new class of

integrals of the form
+oo
[T L,
oo L+ 22

where, conceptually, f(z) denotes an elementary function. Despite its potential
to yield closed-form evaluations involving classical mathematical constants and
special functions, this class has not been the subject of systematic investigation
in the literature. Our aim is to identify and rigorously prove new identities
within this framework, while also drawing attention to links with existing
results and suggesting ways in which it can be further generalized.

The rest of the paper can be summarized as follows: Section 2 contains
the main results. An open problem is given in Section 3. Section 4 provides a
conclusion.

2 Results

The results relate to the class of integrals involving odd, power, trigonomet-
ric, logarithmic and exponential functions. Each of these is the subject of a
subsection below.

2.1 0Odd functions

The proposition below is obtained for the odd functions, yielding an elementary
integral result.

Proposition 2.1. Let f : R — R be an odd function. Then, provided the

integral exists,
e f(z)
dz = 0.
/ 1+ 22 .

[e.9]

Proof. Since f is odd, for any € R, we have f(—z) = —f(z). Since the ker-
nel (1 + 2%)7! is even, the integrand is odd and the integral over a symmetric
interval vanishes whenever it converges. (A formal justification requires check-
ing absolute or conditional convergence; standard dominated convergence or
symmetric limits can be applied.) ]

2.2 Power functions

The proposition below considers the square root function, a particular power
function.
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Proposition 2.2. We have

/+OO \/m dz = V2.

1+ a2

—00

Proof. For this integral, note that we have an even function, so it can be

rewritten as oo
T
2 / Vi dx.
0 142

Using the substitution v = /z, so that 2u du = dz, we obtain

+o00 2 +oo 2
4/ Y du:2/ Y du.
o 14u? oo L+t

Thus, using the residue theorem applied to improper integrals, we have

too .2 2 - 52 -
2/OO 1—i—u4dUZ4MReS<1+z47e )+47T2Res(1+24,—e ),

since we consider the poles in the upper half-plane. Therefore

+00 / —im/4 im/4
i da::4m'<e——€ )Zﬂ'\/i.

oo L+ 22 4 4

]

This result can be generalized to other power functions, but we need to
adapt the gamma/beta function computations accordingly.

2.3 Trigonometric functions
The proposition below examines the application of the cosine function.
Proposition 2.3. We have
0 cosx m
/_ 1t dr = =
Proof. A standard approach involves analyzing the following known Fourier

transform:
+o0 itx
€ — ol
dx = me ",

14+ 22

and take the real part at £ = 1 to obtain the result.
It is also possible to use differentiation under the integral sign. Consider

the function . (1)
* cos(tx
t) = dzx.

[e.9]
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Note that f(1) is the result we are looking for. Moreover, since the function
in the integral is even, we have

f(t) = 2/0+0<> cos(tz) dx = 2/0+0<> /0+Oo(sin s)cos(tx)e ** dsdu.

1+ a2

Using Fubini’s theorem, we have

+oo  pHoo e g
ft) = 2/0 /0 (sin s) cos(tz)e** dx ds = 2/0 22 1 ¢2

Performing the change of variable s = tx, then ds = t dr, we obtain

f(t):2/0+oo%(;?d:c, t40.

sin s ds.

On the other hand, note that

xsin(tx)

Fi=-2 Trasinte) b g,

1+ 22

Furthermore, from the first form of f(t), note that

f(0)22/0+00 S

Thus, we have the initial value problem

{f’(t) +f()=0
flO)=m

Therefore, f(t) = we™" for any ¢ > 0 and thus

T cosz T
der = f(1) = —.
/001”29: ="

2.4 Logarithmic functions

The proposition below investigates the case of the logarithmic function.

Proposition 2.4. We have

“+o0o 1 1 2
/ LUk P R———
oo 12
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Proof. One approach uses contour integration or differentiating a parameter-

ized integral such as
T 0n(1 + ta?)
1) = / a2

o0

and evaluating at t = 1, together with known integrals for the arctangent and
logarithm. Differentiating the function, we obtain

£t = /_ - v da.

o (14 22)(1 4 ta?)

Using the residue theorem for improper integrals, we have

1.2

f6) = 2mi (Res ((1 +22)(1 + ta?)’ Z) s ((1 + 162;6(21 + th)’i/ﬂ» ’

where we consider ¢ > 0. Thus

! _ ) 1 1
f'(t) = 2mi (_21(1 —0) "2l — 1)) |

Integrating, we obtain

f@)=mlnjt—1—aln|Vt—1|+xln|t + 1| + k,

where k denotes a certain constant to determine. Thus, applying boundary
conditions, we have £ = 0. On the other hand, when evaluating at ¢t = 1, we
must take into account that the function does not exist at ¢ = 1, since the
obtained pole turns out to be of order two, so we can only calculate its limit.
Therefore, we have

t—1

lim 7 (ln

-1
‘+ln|t+1|> =21In2 =rwln4.

t
V-1
This is obtained using L’Hopital’s rule on the first logarithm, completing the
proof. O

Another result of the same type is given in the proposition below.

Proposition 2.5. We have

+oo
/ de:20+zln2,
_ 1+ 22 2

o0

where C denotes Catalan’s constant.
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Proof. A sketch of the proof is as follows: first, split the integral at zero. Then,
either apply a suitable series expansion or express In(1 + |z|) as an integral
involving rational functions. This allows one to relate the resulting expression
to known series representations that yield Catalan’s constant.

Initially, we can rewrite the integral to be in the interval (0, 1). First, note
that the function is even and can be separated as follows:

1 +o0
2/ (1 + ) d:c+2/ ml+z),,
0 1

1+ 22 1+ 22

Performing the change of variable x = 1/y for the second integral and com-
bining the integrals, we have

2/1 2In(1 + x) _lnxdx.
0

1+ 22

Using the geometric series on the interval (0,1) and taking into account the
uniform convergence, we obtain

+oo

42 / In(1+ z)x 2"dx—2(—1)"/01(1nx)x2"dx.

n=0

Performing integration by parts on both integrals and using the fact that
polynomials decay faster to zero than a logarithm, we then have

400 400 1
(-1 Sy iy
am2y Ly dz + 2 " dz.
" ;2n+1 §2n+1 STy T Z2n+1 ‘

Naturally, from the Fourier expansion of f(t) =t on the interval (—m, ), we
obtain

8

+
2(—1 n+1
=3 20D G,
n

3
Il
_

Thus, evaluating at t = 7/2 and using the odd terms in the series, since they
are the ones that do not vanish, we have

L L
nl 2n—1 :0(271—1—1)
Furthermore, using the fact that

(e
¢= ; (2n + 1)’
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we continue the result as

+oo (_1)n 1$2n+1
In2 -4 d 2C.
T ;2n+1/01+x T

On the other hand, note that

"In(1 4+ ) m/4 m/4 s

Then, using angle subtraction formula for tangent, we have

/ ln(1+tant)dt:/ {1+ at
0 0 1+ tant

Therefore, we obtain

11 1 m/4
/ n{ +x) dw:/ In(1+ tant) dt = = In2.
0 1+$2 0 8

In this way, we complete the proof, since

1 P—
2/ 2In(1 + ) lnxdx—gIHQ—i—ZC.
0

1+ 22

Note that additionally, we obtained the following interesting result

+00 n 1 .2n+1

—1

( ) /I dmzzlnz
2 ot o 1t 8

n=0

2.5 Exponential functions
The proposition below considers the exponential function.

Proposition 2.6. We have

2

+o0 e T
/_OO T2 dx = ermerfc(1).

Proof. We may use convolution representation or express as integral involving
the complementary error function. For instance, write

2

+00 e +o0 +o00 ) )
/ 52 de = / et </ e el dx) dt
—00 x 0 —0o0
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and evaluate inner Gaussian integrals, then exchange integrals and integrate
in ¢, which leads to expressions in terms of erfc(1). In this case, we will use
the substitution zv/1+t¢ = u, so dv = du/+/1+t. On the other hand, the
function to integrate is also even. Substituting, we obtain

+oo +o00 e—u2
2/ et / du | dt.
0 0 I+t

Solving the Gaussian integral, we get

400
/ et v dt.
0 v1i41

Now, performing the substitution 1 + ¢ = v?, then dt = 2v dv, we obtain

2 [T,
T — eV dv|e.
(R )

Or using the definition erfc(z) = (2//7) [ e=* dt, we have

T

2

+o0 e T
/_OO T2 dx = emerfc(1).

3 Open problems

Open problems include some unconsidered integrals of our class, especially
those defined with trigonometric and hypergeometric functions. One may think

o +22 sin|al)
sin(|x
d
/_OO 1+ 22 .
and .
/ tanh(|z|) .
oo L4 2?

For the first, we conjecture that

sinllel)
2V e = e Y E(1) — eBEi(1
| =B - enq),

where E; denotes the standard exponential integral function. However, a com-
plete and rigorous proof of this identity remains to be established.

Regarding the second integral, we can verify that it converges, but a full
proof of its exact value is still an open problem.
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4 Conclusion and perspectives

In this paper, we have compiled and established several integral identities of
the form
[,
2 4T
oo 1+

including evaluations that involve classical mathematical constants and spe-
cial functions. Future work may explore multi-parameter generalizations and
investigate potential connections with representations involving the digamma
and polygamma functions.
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