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1 Introduction

Let us consider the following trigonometric functions

sin x

x
,

tan x

x
, cosx.

when x tends to 0 these functions tend to 1 . Therefore, for any real a, b, c one
gets

a
sin x

x
+ b

tan x

x
+ c cosx− a− b− c,

approaches 0 when x tends to 0 . More precisely,

Proposition 1.1 For a, b, c real positive numbers such that c ≤ 2b−a
3

and
for x ∈

(
0, π

2

)
the following inequality holds

a
sin x

x
+ b

tan x

x
+ c cos x ≥ a+ b+ c.
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Moreover, one have

limx→0

a sinx
x

+ b tanx
x

+ c cos x− a− b− c

x2
=

a− 2b+ 3c

6
.

Proof Indeed, for x ∈
(
0, π

2

)
one gets

sin x

x
> 1− x2

6
,

tan x

x
> 1 +

x2

3
, cosx > 1− x2

2
.

We then deduce

a
sin x

x
+ b

tan x

x
+ c cos x > a+ b+ c− x2

6
(a− 2b+ 3c) > a+ b+ c

since c ≤ 2b−a
3

More generally, one proves the following for any real numbers
p, q, r

Proposition 1.2 For a, b, c, p, q, r real numbers and a, b, c positive such
that c ≤ |2bq−ap|

3r
and for x ∈

(
0, π

2

)
the following inequality holds

a

(
sin x

x

)p

+ b

(
tan x

x

)q

+ c(cos x)r ≥ a+ b+ c.

Moreover, one have

limx→0

a
(
sinx
x

)p
+ b
(
tanx
x

)q
+ c(cos x)r − a− b− c

x2
=

(|2bq − ap| − 3rc)

6
.

Proposition 1.2 reduces to Proposition 1.1 for p = q = r = 1

Proof Indeed, for x ∈
(
0, π

2

)
one gets(

sin x

x

)p

>

(
1− x2

6

)p

>

(
1− px2

6

)
,

(
tan x

x

)q

>

(
1 +

x2

3

)q

>

(
1 +

qx2

3

)
, (cosx)r >

(
1− x2

2

)r

>

(
1− rx2

2

)
Then we derive for p, q > 0

a

(
sin x

x

)p

+b

(
tan x

x

)q

+c(cos x)r ≥ a

(
1− px2

6

)
+b

(
1 +

qx2

3

)
+c

(
1− rx2

2

)
=

a+ b+ c+ (2bq − ap− 3rc)
x2

6
> a+ b+ c
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For p, q < 0 one has

a

(
sin x

x

)p

+b

(
tan x

x

)q

+c(cos x)r ≥ a

(
1− px2

6

)
+b

(
1 +

qx2

3

)
+c

(
1− rx2

2

)
=

a+ b+ c+ (−2bq + ap− 3rc)
x2

6
> a+ b+ c

For the hyperbolic counter part, and by the same way we easily prove

Proposition 1.3 For a, b, c, p, q, r real numbers and a, b, c, r positive such
that c ≥ |2bq−ap|

3r
. and for x ∈ (0,∞) the following inequality holds

a

(
sinh x

x

)p

+ b

(
tanh x

x

)q

+ c(cosh x)r ≥ a+ b+ c.

Moreover, one have

limx→0

a
(
sinhx

x

)p
+ b
(
tanhx

x

)q
+ c(cosh x)r − a− b− c

x2
=

(3rc− |2bq − ap|)
6

.

Proof Indeed, for x ∈ (0,∞) one gets(
sinh x

x

)p

>

(
1 +

x2

6

)p

>

(
1 +

px2

6

)
,

(
tanh x

x

)q

>

(
1− x2

3

)q

>

(
1− qx2

3

)
, (coshx)r >

(
1 +

x2

2

)r

>

(
1 +

rx2

2

)
Then we derive for p, q > 0

a

(
sinh x

x

)p

+ b

(
tanh x

x

)q

+ c(cosh x)r ≥

a

(
1 +

px2

6

)
+b

(
1− qx2

3

)
+c

(
1 +

rx2

2

)
= a+b+c+(−2bq+ap+3rc)

x2

6
> a+b+c

For p, q < 0 one has

a

(
sinh x

x

)p

+ b

(
tanh x

x

)q

+ c(cosh x)r ≥

a

(
1 +

px2

6

)
+b

(
1− qx2

3

)
+c

(
1 +

rx2

2

)
= a+b+c+(2bq−ap+3rc)

x2

6
> a+b+c

The interest of the preceding remarks is to give a more general framework
allowing the insertion of classical inequalities both in trigonometric and hy-
perbolic cases. Propositions 1.2 and 1.3 allows us in particular to derive some
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known inequalities. Indeed, for a = b = c = 1 and p = 2, q = 1, r = 0 one finds
again the Wilker inequality. For p = −2, q = −1, r = 0 one finds the second
Wilker inequality. For p = 3, q = 0, r = 1 one finds the Cusa inequality (and
the Lazarewic inequality for hyperbolic case).

The aim of the present paper is precisely to highlight for different real
values of p, q, r, a, b, c intrinsic properties of new inequalities making it possible
to generalize those well known of classical ones. Moreover, we will prove for
certain values of the parameters the following sharpened inequalities

βxd < a

(
sin x

x

)p

+ b

(
tan x

x

)q

+ c(cos x)r − a− b− c < αxd,

βxd < a

(
sinh x

x

)p

+ b

(
tanh x

x

)q

+ c(cosh x)r − a− b− c < αxd,

where α, β are real and d is even integer such that 2 ≤ d ≤ 10.

The first interesting case to study occurs when

c =
2bq − ap

3r

It corresponds to following functions which are depending of 5 parameters

a

(
sin x

x

)p

+ b

(
tan x

x

)q

+

(
2bq − ap

3r

)
(cos x)r − a− b− 2bq − ap

3r
, (1)

that we propose to minimize and so to derive other interesting inequalities.
In fact, for a ̸= 0 that depends only of 4 parameters (in taking a = 1)

ut(p, q, r, b, x) =

(
sin x

x

)p

+b

(
tan x

x

)q

+

(
2bq − p

3r

)
(cos x)r−1−b− 2bq − p

3r
,

(2)
For the hyperbolic counterpart, one gets the function

uh(p, q, r, b, x) =

(
sinh x

x

)p

+b

(
tanh x

x

)q

+

(
2bq − p

3r

)
(cosh x)r−1−b−2bq − p

3r
.

(3)
The case a = 0 will be treated separately in part 5.

By Propositions 1.2 and 1.3 these functions above are positive. Moreover,
we easily verify that

limx→0
ut(p, q, r, b, x)

x4
< ∞, limx→0

uh(p, q, r, b, x)

x4
< ∞.
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In [5] and [6] some particular cases have been developed.
Recall at first, for p = n, q = 1, r = 0 one proved ([5], Theorem 2.1, [6],

Theorem 2.1)

Theorem A Let us consider the functions

ft(n, x) =

(
sin x

x

)n

+
n tanx

2x
− n+ 2

2
.

Then for every integer n ≥ 2 and for x ∈
(
0, π

2

)
, ft(n, x) is increasing

function with respect to n. Moreover, the following inequalities hold

n

n− 1
ft(n− 1, x) < ft(n, x) <

n(22 + 5n)

(n− 1)(5n+ 17)
ft(n− 1, x) < . . . <

74

64
ft(2, x).

Theorem A1 Let us consider the function

fh(n, x) =

(
sinh x

x

)n

+
n tanhx

2x
− n+ 2

2

Then for every integer n ≥ 2 and for x ∈ (0,∞), fh(n, x) is increasing function
with respect to n. Moreover, the following inequalities hold:

. . . >
fh(n, x)

n(22 + 5n)
>

fh(n− 1, x)

(n− 1)(5n+ 17)
>

fh(n− 2, x)

(n− 2)(5n+ 12)
> . . . >

fh(2, x)

64
.

For p = −n, q = −1, r = 0 one proved ([5], Theorem 2.7, [6], Theorem 2.6)

Theorem B Let us consider the function

gt(n, x) =
( x

sin x

)n
+

nx

2 tanx
− n+ 2

2

Then for every integer n ≥ 3 and for x ∈
(
0, π

2

)
, gt(n, x) is increasing function

with respect to n. Moreover, the following inequalities hold

2n

n− 1
gt(n− 1, x) > gt(n, x) >

n(5n− 2)

(n− 1)(5n− 7)
gt(n− 1, x) > . . . >

24

13
gt(3, x).

Theorem B1 �Let us consider the function

gh(n, x) =
( x

sinh x

)n
+

nx

2 tanhx
− n+ 2

2

Then for every integer n ≥ 3 and for x ∈ (0,∞), gh(n, x) is increasing function
with respect to n. Moreover, the following inequalities hold the following
inequalities hold

. . . <
g(n, x)

n(5n− 2)
<

g(n− 1, x)

(n− 1)(5n− 7)
<

g(n− 2, x)

(n− 2)(5n− 12)
< . . . <

g(3, x)

39
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For p = n, q = 0, r = 3 one proved ([5], Theorem 2.11, [6], Theorem 2.10)

Theorem C let the function

ht(n, x) =

(
sin x

x

)n

− n cosx

3
+

n− 3

3
.

Then for every integer n ≥ 3 and for x ∈
(
0, π

2

)
, ht(n, x) is increasing function

with respect to n. Moreover, the following inequalities hold

n

n− 1
ht(n−1, x) < ht(n, x) <

n(5n− 7)

(n− 1)(5n− 12)
ht(n−1, x) < . . . <

13

6
ht(3, x).

Theorem C1 Let us consider the function

hh(n, x) =

(
sinh x

x

)n

− n coshx

3
+

n− 3

3
.

Then for every integer n ≥ 3 and for x ∈ (0,∞), hh(n, x) is increasing
function with respect to n. Moreover, the following inequalities hold:

hh(n, x)

n(5n− 7)
>

hh(n− 1, x)

(n− 1)(5n− 12)
>

hh(n− 2, x)

(n− 2)(5n− 17)
> . . .

hh(3, x)

24
.

Remarks Notice that also one can deduce the following limits

limx→0
ft(n, x)

x4
=

fh(n, x)

x4
=

n2

72
+

11n

180
,

limx→0
gt(n, x)

x4
=

gh(n, x)

x4
=

n2

72
− n

180
,

limx→0
ht(n, x)

x4
=

hh(n, x)

x4
=

n2

72
− 7n

360
.

One of the goals we propose to achieve is to is to extend the preceding
results to more general cases using (1) and (2). The paper is organized as
follows. In Parts 2, 3, 4 we provide improvements of the above Theorems
A,A1, B, B1,C,C1. In Part 5, we provide generalizations, in particular of
these of Cusa and Lazarevic inequalities. Open problems and perspectives will
be discussed in Part 7 in order to discover other properties and consider future
improvements. All the proofs are exposed in Part 6.
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2 Generalized Wilker inequalities

That corresponds to

c = 0 or b =
ap

2q
, p, q > 0

Expression (1) becomes

a

(
sin x

x

)p

+
ap

2q

(
tan x

x

)q

− a− ap

2q
,

or by simplifying by a ̸= 0(
sin x

x

)p

+
p

2q

(
tan x

x

)q

− 1− p

2q
, p, q > 0.

For the hyperbolic case, after simplifying by a ̸= 0 expression (2) becomes(
sinh x

x

)p

+
p

2q

(
tanh x

x

)q

− 1− p

2q
.

We propose to prove the following which are an extension of Theorems A
and A1

Theorem 2.1 Let us consider the function

ft(p, q, x) =

(
sin x

x

)p

+
p

2q

(
tan x

x

)q

− 1− p

2q
.

Then, for p ≥ 1, q ≥ 1 and for x ∈
(
0, π

2

)
one has ft(p, q, x) > 0. Moreover,

the following inequalities hold:

(i)
p

p− 1
ft(p− 1, q, x) < ft(p, q, x),

(ii) qft(p, q, x) > (q − 1)ft(p, q − 1, x).

Theorem 2.2 Let us consider the function

fh(p, q, x) =

(
sinh x

x

)p

+
p

2q

(
tanh x

x

)q

− 1− p

2q
.

Then, for p ≥ 1, q ≥ 1 and for x ∈ (0,∞) one has fh(p, q, x) > 0. Moreover,
the following inequalities hold:

(i)
p

p− 1
fh(p− 1, q, x) < fh(p, q, x).

(ii) qfh(p, q, x) > (q − 1)ft(p, q − 1, x).
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3 Generalized second Wilker inequalities

That corresponds to

c = 0 or b =
ap

2q
, p, q < 0

Expression (1) becomes

a

(
sin x

x

)p

+
ap

2q

(
tan x

x

)q

− a− ap

2q

or by simplifying by a ̸= 0(
sin x

x

)p

+
p

2q

(
tan x

x

)q

− 1− p

2q
, p, q < 0

For the hyperbolic case, after simplifying by a ̸= 0 expression (2) becomes(
sinh x

x

)p

+
p

2q

(
tanh x

x

)q

− 1− p

2q
, p, q < 0

We propose to prove the following which extend Theorems B and B1

Theorem 3.1 Let us consider the function

gt(p, q, x) =

(
sin x

x

)p

+
p

2q

(
tan x

x

)q

− 1− p

2q
, p, q < −1

Then, for x ∈
(
0, π

2

)
, gt(p, q, x) > 0. Moreover, the following inequalities hold:

(i)
p

p− 1
gt(p− 1, q, x) < gt(p, q, x),

(ii) qgt(p, q, x) > (q − 1)gt(p, q − 1, x).

Theorem 3.2 Let us consider the function

gh(p, q, x) =

(
sinh x

x

)p

+
p

2q

(
tanh x

x

)q

− 1− p

2q
p, q < 0..

Then, for x ∈ (0,∞), gh(p, q, x) > 0. Moreover, the following inequalities
hold:

(i)
p

p− 1
gh(p− 1, q, x) > gh(p, q, x),

(ii) qgh(p, q, x) > (q − 1)gh(p, q − 1, x).
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4 Generalized Adamovic and Lazarevic inequal-

ities

That corresponds
c ≤ 0 and b = 0, p, r > 0

Expression (1) becomes

a

(
sin x

x

)p

−
(ap
3r

)
(cos x)r − a− −ap

3r
,

or by simplifying by a ̸= 0(
sin x

x

)p

−
( p

3r

)
(cos x)r − 1 +

p

3r
.

For the hyperbolic case, after simplifying by a ̸= 0 expression (2) becomes(
sinh x

x

)p

−
( p

3r

)
(cosh x)r − 1 +

p

3r
.

The case p = 3, r = 1 reduces to the classical Adamowic and Lazarewic
inequalities.

We propose to prove the following which extend Theorems C and C1

Theorem 4.1 Let us consider the function defined for x ∈
(
0, π

2

)
and

p, r ≥ 0

ht(p, r, x) =

(
sin x

x

)p

−
( p

3r

)
(cos x)r − 1 +

p

3r

Then, for every integer p ≥ 3r − 8
5
one has ht(p, r, x) > 0. Moreover, the

following inequalities hold

(i) ht(p, r, x) < ht(p, r − 1, x),

(ii)
ht(p, r, x)

p
>

ht(p− 1, r, x)

p− 1
,

Theorem 4.2 Let us consider the function defined for x ∈ (0,∞) and

hh(p, r, x) =

(
sinh x

x

)p

−
( p

3r

)
(cosh x)r − 1 +

p

3r
.

Then, for every integer p ≥ 3r − 8
5
one has hh(p, r, x) > 0. Moreover, the

following inequalities hold

(i) ht(p, r, x) < ht(p, r − 1, x),

(ii)
ht(p, r, x)

p
>

ht(p− 1, r, x)

p− 1
,
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5 Other remarkable inequalities

Recall for p, q, r natural numbers and a, b positive such that 2bq−ap
3r

> 0 the
following expressions

a

(
sin x

x

)p

+ b

(
tan x

x

)q

+

(
2bq − ap

3r

)
(cos x)r − a− b− 2bq − ap

3r
(1)

a

(
sinh x

x

)p

+ b

(
tanh x

x

)q

+

(
2bq − ap

3r

)
(cosh x)r − a− b− 2bq − ap

3r
(2)

5.1 Generalized Cusa inequalities

(i) Consider the following particular case

a = 0, b = 1, r = −2q

3

Then from expression (1) we find again to Adamovic inequality for q ≥ 0(
tan x

x

)q

− (cos x)
−2q
3 = (cosx)−q

[(
sin x

x

)q

− (cos x)
q
3

]
> 0

likewise from expression (2) we find again Lazarevic inequality(
tanh x

x

)q

− (cosh x)
−2q
3 = (coshx)−q

[(
sinh x

x

)q

− (cosh x)
q
3

]
> 0.

(ii) Consider also the particular case

a = 0, b = 1, q = 1, r = 1.

Then expression (1) becomes(
tan x

x

)
− 2

3 cosx
− 1

3
.

That corresponds to Cusa inequality

cos x

((
tan x

x

)
− 2

3 cosx
− 1

3

)
=

sin x

x
− 2 + cos x

3
< 0.

For the hyperbolic counterpart, one find

cosh x

((
tanh x

x

)
− 2

3 coshx
− 1

3

)
=

sinh x

x
− 2 + cosh x

3
< 0.
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The following improve the last cases and generalize the Cusa and Lazarevic
inequalities

Proposition 5.1 For the case a = 0, b = 1, r = −1 in expression (1)
and for x ∈ (0, π

2
) the following inequalities hold

(i) for q = 1 one has (
tan x

x

)
<

2

3 cosx
+

1

3
.

(ii) for q ≥ 2 one has

2q

3 cosx
+ 1− 2q

3
<

(
tan x

x

)q

.

By the same way we easily prove

Proposition 5.2 For the case a = 0, b = 1, r = −1 in expression (2)
and for x ∈ (0,∞) the following inequalities hold
(i) for q = 1 one has (

tanh x

x

)
<

2

3 coshx
+

1

3
.

(ii) for q ≥ 2 one has

2q

3 coshx
+ 1− 2q

3
<

(
tanh x

x

)q

.

Theorem 5.3 Let us consider the function

ut(q, x) =

(
tan x

x

)q

− 2q

3

1

cos x
− 1 +

2q

3
.

Then, for every integer q > 2 and for x ∈ (0, π
2
), the following inequalities hold

ut(q, x)

q(10q − 11)
>

ut(q − 1, x)

(q − 1)(10q − 21)
.

Theorem 5.4 Let us consider the function

uh(q, x) =

(
tanh x

x

)q

− 2q

3

1

cosh x
− 1 +

2q

3
.

Then, for every integer q > 2 and for x ∈ (0,∞), the following inequalities
hold

uh(q, x)

q(10q − 11)
<

uh(q − 1, x)

(q − 1)(10q − 21)
.
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5.2 Other interesting cases

A question that arises naturally: can we find other similar inequalities to that
of Cusa for other q, r values.
Suppose now

c ≥ 0, a = 0, and q, r > 0.

Expression (1) becomes

b

(
tan x

x

)q

+
2bq

3r
(cos x)r − b− 2bq

3r
,

or by simplifying by b 6= 0(
tan x

x

)q

+
2q

3r
(cos x)r − 1− 2q

3r
.

For the hyperbolic case, after simplifying by b ̸= 0 expression (2) becomes(
tanh x

x

)q

+
2q

3r
(cosh x)r − 1− 2q

3r
.

We propose now to prove the following

Theorem 5.5 Let us consider the function

ut(q, r, x) =

(
tan x

x

)q

+
2q

3r
(cos x)r − 1− 2q

3r
.

Then, for integers q > 1, r > 1 and for x ∈ (0, π
2
), ut(q, r, x) > 0. Moreover,

the following inequalities hold

(i) rut(q, r, x) < (r − 1)ut(q, r − 1, x),

(ii)
ut(q, r, x)

q
>

ut(q − 1, r, x)

q − 1
.

Theorem 5.6 Let us consider the function

uh(q, r, x) =

(
tanh x

x

)q

+
2q

3r
(cosh x)r − 1− 2q

3r
.

Then, for integers q > 1, r > 1 and for x ∈ (0,∞), uh(q, r, x) < 0. Moreover,
the following inequalities hold

(i) ruh(q, r, x) < (r − 1)uh(q, r − 1, x),

(ii)
uh(q, r, x)

q
>

uh(q − 1, r, x)

q − 1
.



New Look of Trigonometric and Hyperbolic Inequalities 105

6 Proofs

The following lemmas will be useful in the sequel

Lemma 6.1 For x ∈ (0, π
2
) and p, q, r ≥ 1 or p, q, r ≤ −1 or p, q ≥ 1 the

following inequalities holds

(i) 1−px2

6
+

(
− p

180
+

p2

72

)
x4+

(
− p

2835
+

p2

1080
− p3

1296

)
x6 <

(
sin x

x

)p

< 1−px2

6
+

(
− p

180
+

p2

72

)
x4+

(
− p

2835
+

p2

1080
− p3

1296

)
x6+

(
− p

37800
+

101p2

1360800
− p3

12960
+

p4

31104

)
x8,

(ii) 1+
qx2

3
+

(
7

90
q +

q2

18

)
x4+

(
62

2835
q +

7

270
q2 +

1

162
q3
)
x6 <

(
tan x

x

)q

<

1+
qx2

3
+

(
7q

90
+

q2

18

)
x4+

(
62q

2835
+

7q2

270
+

q3

162

)
x6+

(
3509q2

340200
+

127q

18900
+

7q3

1620
+

q4

1944

)
x8,

(iii) 1− rx2

2
+

(
− r

12
+

r2

8

)
x4 +

(
r2

24
− r

45
− r3

48

)
x6 < (cosx)r <

1−rx2

2
+

(
− r

12
+

r2

8

)
x4+

(
r2

24
− r

45
− r3

48

)
x6+

(
7r2

480
− 17r

2520
− r3

96
+

r4

384

)
x8,

(iv)

(
log x

x

)
< −1

6
x2 − 1

180
x4 − 1

2835
x6 − 1

37800
x8,

(v) log

(
sin x

x

)
> −1

6
x2− 1

180
x4− 1

2835
x6, log

(
tan x

x

)
>

1

3
x2+

7

90
x4+

62

2835
x6.

Lemma 6.2 For x ∈ (0,∞), and p, q ≥ 1 or p, q ≤ −1 the following
inequalities holds

(i) 1 +
px2

6
+

(
1

120
p+

1

72
p (p− 1)

)
x4 <

(
sinh x

x

)p

<

1+
px2

6
+

(
1

120
p+

1

72
p (p− 1)

)
x4+

(
1

5040
p+

1

720
p (p− 1) +

1

1296
p (p− 1) (p− 2)

)
x6,

(ii) 1−qx2

3
+

(
2q

15
+

q(q − 1)

18

)
x4+

(
−17q

315
− 2q(q − 1)

45
− q(q − 1)(q − 2)

162

)
x6 <

(
tanh x

x

)q

,

(iii)

(
log x

sinh x

)
> −1

6
x2 +

1

180
x4 − 1

2835
x6 +

1

37800
x8,

(iv) log

(
sinh x

x

)
<

1

6
x2− 1

180
x4+

1

2835
x6, log

(
tanh x

x

)
< −1

3
x2+

7

90
x4− 62

2835
x6.
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6.1 Proof of Theorem 2.1

By Lemma 6.1 one gets(
sin x

x

)p

> 1− px2

6
,

(
tan x

x

)q

> 1 +
qx2

3
+

(
7q

90
+

q2

18

)
x4,

we then deduce

ft(p, q, x) > −px2

6
+
p (1 + 1/3 qx2 + (2/15 q + 1/18 q (q − 1)) x4)

2q
− p

2q
=

1

180
px4 (7 + 5 q) > 0.

Consider the function ϕ(p) = ft(p,q,x)
p

and compute its derivative with respect
to p

ϕ′(p) =

((
sin (x)

x

)p

ln

(
sin (x)

x

)
+ 1/2

(
tan (x)

x

)q

q−1 − 1/2 q−1

)
p−1−

((
sin (x)

x

)p

+ 1/2 p

(
tan (x)

x

)q

q−1 − 1− 1/2
p

q

)
p−2 =

p

(
sin (x)

x

)p

ln

(
sin (x)

x

)
−
(
sin (x)

x

)p

+ 1 > 0,

since its second derivative

ϕ′′(p) = p

(
sin (x)

x

)p(
ln

(
sin (x)

x

))2

> 0.

That means ϕ(p) > ϕ(p− 1) or equivalently

(p− 1)ft(p, q, x)− pft(p− 1, q, x) > 0.

Inequality (i) of Theorem 2.1 is then proved. Now to prove (ii) let us consider
the derivative of qft(p, q, x) with respect to q(

sin (x)

x

)p

+ 1/2 p

(
tan (x)

x

)q

q−1 − 1− 1/2
p

q
+

q

(
1/2 p

(
tan (x)

x

)q

ln

(
tan (x)

x

)
q−1 − 1/2 p

(
tan (x)

x

)q

q−2 + 1/2
p

q2

)
=(

sin (x)

x

)p

− 1 + 1/2 p

(
tan (x)

x

)q

ln

(
tan (x)

x

)
>(

sin (x)

x

)p

− 1 + 1/2 p

(
tan (x)

x

)q
(
tan (x)

x
− 1− 1/2

(
tan (x)

x
− 1

)2
)

>(
1/30 p+

1

72
p2 + 1/18 pq

)
x4 > 0.
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6.2 Proof of Theorem 2.2

By Lemma 6.2 one gets

1 + 1/6 px2 <

(
sinh (x)

x

)p

, 1/2
p

q
− 1/6 px2 < 1/2 p

(
tanh (x)

x

)q

q−1,

then
fh(p, q, x) > 0.

Consider the function ϕ(p) = fh(p,q,x)
p

and compute its derivative with respect
to p

ϕ′(p) = −
(
sinh (x)

x

)p

p−2 +

(
sinh (x)

x

)p

ln

(
sinh (x)

x

)
p−1 + p−2 =

p

(
sinh (x)

x

)p

ln

(
sinh (x)

x

)
−
(
sinh (x)

x

)p

+ 1 > 0,

since its second derivative

ϕ′′(p) = p

(
sinh (x)

x

)p(
ln

(
sinh (x)

x

))2

> 0.

That means ϕ(p) > ϕ(p− 1) or equivalently

(p− 1)fh(p, q, x)− pfh(p− 1, q, x) > 0.

Inequality (i) is then proved.To prove (ii) let us consider the derivative of
qfh(p, q, x) with respect to q(

sinh (x)

x

)p

+ 1/2 p

(
tanh (x)

x

)q

ln

(
tanh (x)

x

)
− 1 >

(
sinh (x)

x

)p

−1+1/2 p

(
tanh (x)

x

)q
(
tanh (x)

x
− 1− 1/2

(
tanh (x)

x
− 1

)2
)

>

(
1/30 p+

1

72
p2 + 1/18 pq

)
x4 > 0.

6.3 Proof of Theorem 3.1

Let us write in the sequel
s = −p, t = −q

Let us recall ( x

sin x

)s
+

s

2t

( x

tan x

)t
− s

2t
− 1.
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By Lemma 6.1 this function is upper than

>
sx2

6
+

(
7s

360
+

s(s− 1)

72

)
x4 +

s
(
1− tx2

3

)
2t

− s

2t
=

sx4

360
(2 + 5s) > 0.

Consider the function ϕ(p) = gt(p,q,x)
p

and compute its derivative with respect
to p

ϕ′(p) =

((
x

sin (x)

)p

ln

(
x

sin (x)

)
+ 1/2

(
x

tan (x)

)q

q−1 − 1/2 q−1

)
p−1−

((
x

sin (x)

)p

+ 1/2 p

(
x

tan (x)

)q

q−1 − 1− 1/2
p

q

)
p−2.

The second derivative is

ϕ′′(p) =

(
x

sin (x)

)p(
(sin (x))−1 − x cos (x)

(sin (x))2

)
sin (x) ln

(
x

sin (x)

)
x−1 > 0.

Since ϕ′(0) = 0 then ϕ′(p) > 0 and ϕ(p) is increasing. That means (p −
1)gt(p, q, x)− pgt(p− 1, q, x) > 0.
To prove (ii) let us consider difference

qgt(p, q, x)−(q−1)gt(p, q−1, x) = q

((
x

sin (x)

)p

+ 1/2 p

(
x

tan (x)

)q

q−1 − 1− 1/2
p

q

)
−

(q − 1)

((
x

sin (x)

)p

+ 1/2 p

(
x

tan (x)

)q−1

(q − 1)−1 − 1− 1/2
p

q − 1

)
=

−1/2 p

(
x

tan (x)

)q

tan (x)x−1 + 1/2 p

(
x

tan (x)

)q

+

(
x

sin (x)

)p

− 1 >(
− 11

180
p+ 1/18 qp+

1

72
p2
)
x4 > 0

by Lemma 6.1 since p > 1, q > 1.

6.4 Proof of Theorem 3.2

Let us write in the sequel
s = −p, t = −q

Let us recall

gh(s, t, x) =
( x

sinh x

)s
+

s

2t

( x

tanh x

)t
− s

2t
− 1
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By Lemma 6.2 this function is upper than

> −sx2

6
+

(
7s

360
+

s(s− 1)

72

)
x4 +

s
(
1− tx2

3

)
2t

− s

2t
=

sx4

180
(−7 + 5t) > 0

for t ≥ 2.
Consider the function ϕ(p) = gh(p,q,x)

p
and compute its derivative with respect

to p

ϕ′(p) =

(
x

sinh (x)

)p(
ln

(
x

sinh (x)

))2

p−1−2

(
x

sinh (x)

)p

ln

(
x

sinh (x)

)
p−2+

2

(
x

sinh (x)

)p

p−3 − 2 p−3 =(
x

sinh (x)

)p

ln

(
x

sinh (x)

)(
ln

(
x

sinh (x)

)
p− 2

)
p−2+2

(
x

sinh (x)

)p

p−3−2 p−3 < 0

because (
ln

(
x

sinh (x)

)
p− 2

)
< 0, 2

(
x

sinh (x)

)p

p−3 − 2 p−3 < 0.

To prove (ii) let us consider the derivative of ϕ(q) = qgt(p, q, x) with respect
to q

ϕ′(q) = q

(
x

sinh (x)

)p

ln

(
x

sinh (x)

)
+ 1/2

(
x

tanh (x)

)q

− 1/2

as well as

ϕ′′(q) =

(
x

sinh (x)

)p

ln

(
x

sinh (x)

)
+ 1/2

(
x

tanh (x)

)q

ln

(
x

tanh (x)

)
>

(
− 1

30
+ 1/36 p+ 1/18 q

)
x4 > 0,

by Lemma 7.4 since p > 1, q > 1.

6.5 Proof of Theorem 4.1

Let us recall

ht(p, r, x) =

(
sin x

x

)p

−
( p

3r

)
(cos x)r − 1 +

p

3r
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By Lemma 6.1 this function is upper than

−px2

6
+

(
p

120
+

p(p− 1)

72

)
x4 −

p
(
1− r

2
x2 + ( r

24
+ r(r−1)

8
)x4
)

3r
+

p

3r
=

1

360
px4(8 + 5p− 15r) > 0

since by hypothesis 8 + 5p− 15r > 0.
Turn now to the inequality of Theorem 4.1. Let us compute the derivative

of ht(p, r, x) with respect to r and we use Lemma 7.3

−1/3
p (cos (x))r ln (cos (x))

r
+ 1/3

p (cos (x))r

r2
− 1/3

p

r2
<

−1/3
(−1/12 p+ 1/4 pq)x4

q
+1/3

p

q2
+1/3

p (1/24 q + 1/8 q (q − 1)) x4

q2
−1/3

p

q2
=

−1/3
(−1/12 p+ 1/4 pq)x4

q
+1/3

p (1/24 q + 1/8 q (q − 1)) x4

q2
= −1/24 px4 < 0.

Thus ht(p, r, x) < ht(p, r − 1, x).

Let us compute the derivative of ht(p,r,x)
p

with respect to p and we use Lemma
7.3

−
(
sin (x)

x

)p

p−2 +

(
sin (x)

x

)p

ln

(
sin (x)

x

)
p−1 + p−2 >(

−
(

1

120
p+

1

72
p (p− 1)

)
p−2 − 1

180
p−1 +

1

36

)
x4 = (

1

72
x4 > 0.

6.6 Proof of Theorem 4.2

Let us consider

hh(p, r, x) =

(
sinh x

x

)p

−
( p

3r

)
(cosh x)r − 1 +

p

3r

By Lemma 6.2 this function is upper than

px2

6
−
(

p

120
+

p(p− 1)

72

)
x4+

p
(
1− rx2

2
+
(

r
24

+ r(r−1)
18

)
x4
)

3r
+

p

3r
=

px4

360
(8+5p−15r) > 0,

since 8 + 5p− 15r > 0.
Turn now to the inequality of Theorem 4.2. Let us compute the derivative of
hh(p, r, x) with respect to r and we use Lemma 7.4

−1/3
p (cosh (x))r ln (cosh (x))

r
+ 1/3

p (cosh (x))r

r2
− 1/3

p

r2
<
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−1/3
(−1/12 p+ 1/4 pq)x4

q
+1/3

p

q2
+1/3

p (1/24 q + 1/8 q (q − 1)) x4

q2
−1/3

p

q2
=

−1/3
(−1/12 p+ 1/4 pq)x4

q
+1/3

p (1/24 q + 1/8 q (q − 1)) x4

q2
= −1/24 px4 < 0.

Thus hh(p, r, x) < hh(p, r − 1, x).

Let us compute the derivative of hh(p,r,x)
p

with respect to p and we use Lemma
7.4

−
(
sinh (x)

x

)p

p−2 +

(
sinh (x)

x

)p

ln

(
sinh (x)

x

)
p−1 + p−2 >(

−
(

1

120
p+

1

72
p (p− 1)

)
p−2 − 1

180
p−1 +

1

36

)
x4 = (

1

72
x4 > 0.

6.7 Proof of Proposition 5.1

As we have seen (i) is directly deduced from the Cusa inequality. On the other
hand, the following inequality

1 + 2 cos x

3
<

(
sin x

x

)2

implies
4 cosx

3
− (cos x)2

3
<

1 + 2 cos x

3
<

(
sin x

x

)2

We then deduce (ii) for q = 2 since

1

(cos x)2

[
4 cosx

3
− (cos x)2

3

]
<

1

(cos x)2

(
sin x

x

)2

Consider now the case q ≥ 2. The derivative with respect to q of

α(x, q) =
3

2q

(
tan x

x

)q

− 1

cos x
+ 1− 3

2q

is

− 3

2q2

(
sin x

x cosx

)q

+
3

2q

(
sin x

x cosx

)q

ln

(
sin x

x cosx

)
+

3

2q2
=(

sin x

x cosx

)q (
− 3

2q2
+

3

2q
ln

(
sin x

x cosx

))
+

3

2q2
>(

1 +
qx2

3
+

(
2q

15
+

q(q − 1)

18

)
x4

)(
− 3

2q2
+

x2

2q
+

7

60

x4

q

)
+

3

2q2
=

1

5400
x4
(
450 + 420x2 + 49x4 + 150qx2 + 35x4q

)
> 0

That means α(x, q) is increasing with respect to q. Then

α(x, q) > α(x, 2) =

(
tan x

x

)2

− 4

3 cosx
− 1 +

4

3
> 0.
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6.8 Proof of Proposition 5.2

As we have seen (i) is directly deduced from the Lazarevic inequality. On the
other hand, the following inequality

1 + 2 cosh x

3
<

(
sinh x

x

)2

implies

4 coshx

3
− (cosh x)2

3
<

1 + 2 cosh x

3
<

(
sinh x

x

)2

.

We then deduce (ii) for q = 2 since

1

(cosh x)2

[
4 coshx

3
− (cosh x)2

3

]
<

1

(cosh x)2

(
sinh x

x

)2

Consider now the case q ≥ 2. The derivative with respect to q of

β(x, q) =
3

2q

(
tanh x

x

)q

− 1

cosh x
+ 1− 3

2q

is

− 3

2q2

(
sinh x

x coshx

)q

+
3

2q

(
sinh x

x coshx

)q

ln

(
sinh x

x coshx

)
+

3

2q2
=(

sinh x

x coshx

)q (
− 3

2q2
+

3

2q
ln

(
sinh x

x coshx

))
+

3

2q2
>(

1− qx2

3
+

(
−2q

15
+

q(q − 1)

18

)
x4

)(
− 3

2q2
− x2

2q
+

7

60

x4

q

)
+

3

2q2
=

1

5400
x4
(
450 + 420x2 + 49x4 + 150qx2 + 35x4q

)
> 0

That means α(x, q) is increasing with respect to q. Then

β(x, q) > β(x, 2) =

(
tanh x

x

)2

− 4

3 coshx
− 1 +

4

3
> 0

6.9 Proof of Theorem 5.3

Let us prove that the function

ut(q, x)

q(10q − 11)
=

(
tanx
x

)q − 2q
3 cosx

− 1 + 2q
3

q(10q − 11)
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is increasing with respect to q. Let us compute its derivative with respect to
q : ((

sin x

cos(x)x

)q

ln

(
sin x

x cosx

)
− 2

3 cosx
+

2

3

)
q−1(−11 + 10q)−1−((

sin x

x cosx

)q

− 2q

3 cosx
− 1 +

2

3q

)
(−11 + 10q)−1q−2−

10

((
sin x

cos xx

)q

− 2q

3 cosx
− 1 +

2

3
q

)
q−1(−11 + 10q)−2 =(

sin x

x cosx

)q (
q(−11 + 10q) ln

(
sin x

x cosx

)
+ 11− 20q

)
q−2(−11 + 10q)−2+

20

3

1

cos(x)(−11 + 10q)2
− 203q2 − 60q + 33

q2(−11 + 10q)2

By Lemma 6.1 the last expression is upper than

>

(
1 + qx2

3
+
(

2q
15

+ q(q−1)
18

)
x4
)(

q(−11 + 10q)
(

x2

3
+ 7x4

90
+ 62x6

2835

)
+ 11− 20q

)
q2(−11 + 10q)2

+

20

3

(
1 + x2

2
+ 5

24
x4
)

(−11 + 10q)2
− 20q2 − 60q + 33

3q2(−11 + 10q)2
=

1

510300

(2205q2x2 + 620x4q2 + 9450q2 + 6807qx2 + 26460q + 868x4q + 11160) x6

q(−11 + 10q)
.

The last expression is positive for q ≥ 2.
Thus we deduce this derivative is positive and the function is increasing with
respect to q. We then deduce that

ut(q, x)

q(10q − 11)
>

ut(q − 1, x)

(q − 1)(10q − 21)

6.10 Proof of Theorem 5.4

Let us prove that the function

uh(q, x)

q(10q − 11)
=

(
tanhx

x

)q − 2q
3 coshx

− 1 + 2q
3

q(10q − 11)

is decreasing with respect to q. Let us compute its derivative with respect to
q : ((

sinhx
x coshx

)q
ln
(
sinhx
x cosh

)
− 2

3 coshx
+ 2

3

)
q(−11 + 10q)

−
((

sinhx
x coshx

)q − 2q
3 coshx

− 1 + 2q
3

)
q2(−11 + 10q)

−
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((
sinhx
x coshx

)q − 2q
3 coshx

− 1 + 2q
3

)
q(−11 + 10q)2

=

(
sinh x

x coshx

)q

(
q(−11 + 10q) ln

(
sinh(x)
x coshx

)
+ 11− 20q

)
q2(−11 + 10q)2

+

20

3

1

cosh x(−11 + 10q)2
− 20q2 − 60q + 33

3q2(−11 + 10q)2

By Lemma 6.2 the last expression is less than

<

(
1− qx2

3
+
(

2q
15

+ q(q−1)
18

)
x4
)(

q(−11 + 10q)
(
−x2

3
+ 7x4

90
− 62x6

2835

)
+ 11− 20q

)
q2(−11 + 10q)2

6.11 Proof of Theorem 5.5

It is easy to see that fo x ∈ (0, π
2
)(

tan (x)

x

)q

− 1 > 0,
2q

3p
(1− q (cos (x))p

p
) > 0,

that implies

ut(q, r, x) =

(
tan (x)

x

)q

− 2/3
q (cos (x))p

p
− 1 + 2/3

q

p
> 0.

To prove (i) let us derive

rut(q, r, x) = r

(
tan (x)

x

)q

− 2/3 q (cos (x))r − r + 2/3 q

with respect to r(
tan (x)

x

)q

− 2/3 q (cos (x))p ln (cos (x))− 1 < 0.

This means rut(q, r, x) is decreasing with r.
Let us consider now

ut(q, r, x)

q
=

(
tan (x)

x

)q

q−1 − 2/3
(cos (x))p

p
− q−1 + 2/3 p−1,

its derivative with respect to q is

−
(
tan (x)

x

)q

q−2 +

(
tan (x)

x

)q

ln

(
tan (x)

x

)
q−1 + q−2 >(

− (2/15 q + 1/18 q (q − 1)) q−2 +
7

90
q−1 +

1

9

)
x4 =

1

18
x4 > 0,

by Lemma 6.1.
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6.12 Proof of Theorem 5.6

It is easy to see that fo x ∈ (0,∞)(
tanh (x)

x

)q

− 1 < 0,
2q

3p
(1− q (cosh (x))p

p
) < 0,

that implies

uh(q, r, x) =

(
tanh (x)

x

)q

− 2/3
q (cosh (x))p

p
− 1 + 2/3

q

p
< 0.

To prove (i) let us derive

ruh(q, r, x) = r

(
tanh (x)

x

)q

− 2/3 q (cosh (x))r − r + 2/3 q

with respect to r(
tanh (x)

x

)q

− 2/3 q (cosh (x))p ln (cosh (x))− 1 < 0.

This means ruh(q, r, x) is decreasing with r.
Let us consider now

uh(q, r, x)

q
=

(
tanh (x)

x

)q

q−1 − 2/3
(cosh (x))p

p
− q−1 + 2/3 p−1,

its derivative with respect to q is

−
(
tanh (x)

x

)q

q−2 +

(
tanh (x)

x

)q

ln

(
tanh (x)

x

)
q−1 + q−2 >

(
− (2/15 q + 1/18 q (q − 1)) q−2 +

7

90
q−1 +

1

9

)
x4 =

1

18
x4 > 0,

by Lemma 6.2.

7 Open Problem

It is interesting that this study can be developed, allowing new horizons to be
opened regarding this type of inequalities. Theorems 5.5 and 5.6 really give us
hope. To that end, it would be skillful to consider inequalities in a more global
approach, including (1) and (2) so that the theorems 2.1, 2.2, 3.1, 3.2, 4.1, 4.2
appear as particular cases. On the other hand, it would also be interesting to
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evaluate the functions considered in parts 2, 3, 4 and 5. In this sense, we can
frame the following differences (in the two cases trigonometric and hyperbolic):

f(p, q, x)

p(12 + 5p+ 10q)
− x4

360
,

g(p, q, x)

p(12 + 5p+ 10q)
− x4

360
,

h(p, q, x)

p(12 + 5p+ 10q)
− x4

360
,

h(q, r, x)

q(4 + 15r + 10q)
− x4

180
.

For example can we have the following inequalities (or their converse) for
certain values of p, q ?

−−480− 588q − 140q2 − 42p+ 35p2

(45360)(12 + 5p+ 10q)
<

f(p, q, x)

p(12 + 5p+ 10q)
− x4

360
< 0.
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