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Abstract

There is always a high probability of finding individuals in-
fected by COVID-19 to be having other underlying diseases.
Those who have these two or more diseases died at higher
rate, four times, compared to those who are suffering from one
disease. For individuals under comorbidity, attrition rate is
higher meaning the rate of recovery is low and more resources
are used in cases of comorbidity. Containment measures for
COVID-19 such as quarantine and social distancing may lead
to a decline in exercising and lack of a balanced diet, which
are key for managing diabetic complications such as vision
loss and kidney failure. In this note, we analyze comorbidity
under vaccination.

Keywords: COVID-19, Diabetes, Comorbidity, Vaccination.
2010 Mathematics Subject Classification: Primary 92D30; secondary
34A34, 37TN25.

1 Introduction

There is existence of comorbidities of diseases amongst individuals who have
COVID-19 and people suffering from comorbidities tend to have a weaker im-
munity system, making their bodies vulnerable to any disease attacks thereby
leading to low recovery rate and high death rate [8]. Considering COVID-19
and diabetes as a comorbidities, it takes a longer period for recovery and death
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Table 1: Parameters and description of SIR population

’ Symbol \ Parameter ‘

S Susceptible population

1 Infected population

R Recovery population

15} Transmission probability
vy death /recovery rate

may occur faster compared to those who have COVID-19 only.

Mathematical epidemiologists are recognized as pioneers of mathematical epi-
demiology. The work of [25] came up with susceptibility concept and Sir Ross
and Kermack and Mckendrick were the first people to formulate mathematical
models and develpoed a malaria infection model, whose result showed malaria
can be reduced if the population of mosquitoes is decreased as malaria spreads
through mosquito bites [9]. From his observation, it was believed that he came
up with the important concept in epidemiology and later it was known as Ry.
Certain studies used Ry on compartmental model for diseases, and they discov-
ered that there was recovery as result of permanent immunity and re-infection
was also possible [10]. Later, an expansion was done on epidemiology by [1]
where they introduced latent (exposed) period in his model as one of the com-
partmental (infected individual cannot infect others in the population).
Leading cause of deaths worldwide remain to be infectious diseases includ-
ing Ebola, COVID-19 among others. The transmission of these infections
is being explored and analyzed using mathematical models. The author in
[13] formulated the first mathematical model which he used to analyze how
vaccination of a healthy individual against smallpox can be effective during
attack with the disease. The study by [14] developed a discrete time model
of measles epidemic that reoccurs within a population. From a differential
equation done by [15] for malaria as a host-vector disease, he recommended
that the mosquitoes population should decrease in order to control malaria.
The work was expanded by [17] where they formulated the first compartmen-
tal model having susceptible-infected-recovery (SIR) as parameters. Another
susceptible-exposed-infected-recovered (SEIR) populations model was formu-
lated and numerically analyzed by [39] which examined seasonality in recurrent
epidemics. The model was formulated as shown below:

aw
— = —pS5I

dt p

M
d = pSI—kE

dt
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Table 2: Parameters and description of SEIR population

’ Symbol \ Parameter ‘

Susceptible population
Exposed population
Infected population
Recovery population
Transmission probability
death/recovery rate

rate exposed people

2™z 2O

dA

O KE— AT
dt e
AN

“@vo_ T

dt i

The COVID-19 is an on-going disease and spread in most counties and con-
tainment measures like quarantine and isolation of infected individuals among
others are being applied. In this model [3], the disease progress has been de-
termined by basic reproduction number. Data from different countries were
considered and analysis showed that the infection peak was reached 10 days
after restriction measures were introduced. It was suggested from the model
that the introduction of quarantine was not sufficient and stricter measures
were further needed for the control of corona virus infection [16]. This model
had several limitations such as the assumption of single incubation period,
where other available data contradicting the 10 days according to this model
and state the incubation could take up to four weeks. Therefore, distribu-
tion delay was suggested to be used [20]. They came up with the model
of Susceptible-infected-recovery model(SIR). Other parameters and variables
were not included like dr and latent class.

ds

0 T

7 kIS

dl

— = gIS—-pI -0l
o kIS — Bl — 0o
dR

2 o1

dt b

Another quarantine model was introduced where a sub-population of asymp-
tomatic individuals was considered. As the incubation period ended, the dis-
ease symptoms manifested and individuals were isolated in the quarantine to
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Table 3: Parameters and description of symptomatic individuals

’ Symbol \ Parameter ‘

Susceptible population
Infected population

Recovery population
Transmission rate

Recovery rate

Mortality rate due to infection

W™ A Ny~ Wn

Table 4: Parameters and description of asymptomatic individuals

| Symbol | Parameter |

S Susceptible population

I Latent Infected individuals

T Incubation period

t—r1 Individuals infected rate before incubation period

avoid infecting others [23]. As a result, they could not spread the infection any
more. The model did not consider the movement of people and how this can
infect others. From the model, no co-morbidity, vaccination, effect of infection
during asymptomatic period was not considered [24] of which are the interest
in this work. The model became as follows:

as

= = —rI(t)S(t)
Z—; = rI(t)S(t) —rI(t—T)S(t —7T)

The model above in [13] showed exposure time as a parameter was developed
and analyzed. For a local setting, such as large social gatherings when Ry of
2 and a 14 day infection period, it was possible for an infected person staying
more than 9 hours in a social gathering to infect other people. Recommen-
dations from the model show that those who are attending a social gathering
should have protection [29]. Due to continuous progress, surveillance and up-
date predictions which are necessary, this can cause a change in the prescription
of the model hence more research should be carried out. An exposed individual
in such a setting can be protected from being infected by staying protected



150 Florence Adongo, Titus Aminer, Benard Okelo, Benson Onyango

Table 5: Parameters and description of SIE model without recovery

’ Symbol \ Parameter

Susceptible population

Infected population

Exposed population

Rate of infection

Level of protection of exposed person

The arrival-departure rate of attendees

Time scale and turning factor to adjust parameters

N0 T ~W

(via washing of hands and/or use of face mask) [28]. The § was derived based
on the known Ry, population size of the susceptible Sy hence 5 = % + T%’O.
The model did not include the Recovery class as more people are recovering
from the disease, vaccination class, parameters like natural death rate and
death induced by COVID-19 infection and comorbidity such as diabetes were

not used [30]. Model description is as follows:

ds 1

E = _BSN -+ aF +c
dE 1

(Z = (1-a)TFE

A model containing isolation class [31], has been formulated and analyzed.
From analytical results, close physical human interaction causes the spread of
COVID-19. They recommended that infected individuals should be isolated
to reduce further disease spread. As disease infection cases rise, they recom-
mend realtime data to be used and more complicated models such as models
for co-morbidity which had not been yet studied.

It has been observed in [32] and [33] that the disease was transmitted from
infected people and infected surfaces. When infected population recover per-
manently or get permanent protection, then we have Ry < 1. But, when there
was no permanent recovery or protection, then re-infection occurs and Ry=1
hence undergo backward bifurcation. Due to re-appearance of the disease,
vaccination, screening and isolation of infected individual were recommended.
Further research and development of models should be carried out as they
did not factor in vaccination as a mean of re-infection and future mass trans-
mission. This study develops a mathematical model for co-morbidity under
vaccination to fill in some of the knowledge gaps.
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2 Literature review

Diabetes is known as a globally silent sweeping epidemic mostly contributed
by increasing number of people becoming sick of the disease [34]. A model
wasndeveloped that had a resonance period of 2.9847134 hours which was far
below that of existing model of 3.5232581 hours illustrating that the glucose
concentration normalized quickly [35]. The model only focussed on internal
rate of increase of the blood glucose concentration. Recommendation was
made for a model that would factor the external rate of increase of the blood
glucose concentration [36]. The model was based on detection of diabetes but
a co-morbidity of COVID-19 and vaccination was not considered. Below is the
model formulated:

d

d—g = —ag—bh+ fe
dh

il cg — dh + ke
d

d—i = —lg— mh + ne.

In [37] the author developed a malaria-Rotavirus co-infection model. The
results showed that when there is treatment of co-infected individuals, there
is reduction on the effect of the two diseases. Global stability can be achieved
if maximum protection was given to co-infection. Co-infection analysis of the
model showed that it underwent forward bifurcation. Numerical simulation
done using reasonable parameter values indicated that co-morbidity sustained
whenever R,,, was more than unit but failed when it was less than one [38].
They dwelt on the co-infection of malaria and rotavirus but we will be dealing
with diabetes and COVID-19 under vaccination comparing the rate of recovery
when you have co-morbidity. The model was developed as follows:

dSy Bmbm Ly Lr+ Lyr+ ¢(Lr+ Lur)
— Su — Br
dt NH NH
— paSy + 1Ly +v2Lr + vsLur
dln Bmbm 1y Lr+ Lyr+ ¢(Lg + Lur)

Su

= Sy —0 Iy — vy — Ol
di Ny H Br Ny M — Viim Minm
dLr Lr+ Lyr+ ¢(Ir+ Iur) Brmbm 1y
— = S — Lp— Lp— L
7 Br N, it N, Lm paLr —YaLp
which is equal to
dSy Binbm Ly Lr+ Lyr+ ¢(Lr+ Lur)
8 Ay — S — S
dt =Ny Or Ny "

— Sy +v1Ly +v2Lr+v3Lur
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dlyg  Bwbmdy Sy — 05 Lrp+ Lyr+ ¢(Lr + Lur)
a Ny 7 R Ny
— vdv — paly — 9l

I

In [40], the researchers developed and analyzed model of children with co-
morbidity of malaria and pneumonia. The results showed that co-infection
reduces due to low transmission rate. The rate of co-infection should be low-
ered by treating both diseases earlier before they become comorbidity. While
the model focussed on malaria and pneumonia, we have developed a model
of COVIDI19-Diabetes comorbidity considering vaccination. The model was
developed as below;

dth — Aw = MuSi — ApS — ) S+ 7 + 7Ip + STarp
ddjé‘/f = AuSy —9Iply — pugly — 7ly — onlyp

O Ao~ Mulp — p)lp — 7o — 0],

d;f\gp = ehrlp — —OApIy — (s — outp + 0y + 0ar + ) arp
div = AvNy = Ay Sy — iy Sy

(Ziv = AvSy —uvly

The diabetes burden and its complications [6] was developed and analyzed.
The findings were given in different scenarios to stress on its important features.
Those with complications took time to recovery and the rate of death was high
compared to those who did not have complications given COVID-19 was one
of the complications. A lot of care should be taken when managing diabetic
individuals with complications compared to those without, hence there is need
to study the co-morbidity of CDUV.

The work of [41] developed and analysed a very instrumental model. As a
result, the transmission and contacting disease again after recovery was higher.
From the model, they did not consider the asymptomatic class for COVID-19
and COVID-19 with comorbidity. In our model, we consider diabetes as a
comorbidity and include asymptomatic class for COVID-19 and latent class
for CDUV. Individuals can infectious while having or without symptoms and
so can infect people with diabetes hence it is necessary to study a model for
COVID-19 and diabetes [42]. The model developed as shown below:

dSy

i Ay — (Aov +Ocm + 1) Su
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dsS,
d(;M = OcmSu — XemAevSem — aScm
dl
d(;‘/ = AevSu — (m +en + pu)lev + virev Rey
d
?va = mlov + (o1 + 61 + p)Qcv
dRCV _ I A
= enlev vq1cv — pnRov — P1Acv Reoy
dl,
% = XcemAovSom — (M2 + @12 + pu)loven + Yadev Roy
d
dR.
% = ynrlecvem + vgelovem — kaRom — Y2Aev Row,

To characterize the optimal controls, Pontryagins maximum principle [43] was
used and iterative method was used to solved optimality system. They per-
formed numerical simulations and the effects of diabetics on recovery of these
complication was not considered. The complications were general and they
did not analyze COVID-19 as a comorbidity [18].

It was observed in [2] that those who were diabetic had higher chances of being
infected with COVID-19 compared to non diabetic. From the study vaccina-
tion class, rate of recovery were not considered as well as the rate of death
which will be done in this paper. The following sets of linear equations were
applied in the study:

d
CZd = ¢ - alSd — OéQSd[C — ,LLSd
dD

E = alsd + (SRC — pD[C — /LD
dS.

e _ At oR.— BS.L — uS.
dt

dl.

dt = ﬂScIc—i_pDIc—i_C@Sd[c _’YIC _,U/[c _,ullc
dR

¢ = ~I.—oR,—6R. — uR,,

di Y 0 K

It is worthnoting that mathematical models for COVID-19, Diabetes and co-
morbidity have been developed, analyzed and several parameters used. Most
of mathematical models of underlying and comorbidity of COVID-19 and dia-
betes have been analysed under rate of transmission and the optimal controls
suggested and tested. This study focuses on the low rate of recovery and how
to lower the death rate caused by the underlying condition under vaccination.
This includes classes such as vaccination as many people are undergoing vacci-
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nation including diabetic people and the management of the comorbidity after
infection of COVID-19 on diabetic population.

3 Basic concepts

Some of basic concepts which are useful in this study are outlined. These
include Mathematical model, dynamical system, COVID-19, diabetes, co-
morbidity, ordinary differential equation, epidemiological model and basic re-
production number [29].

Definition 3.1 (/39/, Definition 3.7) A deterministic model is an estab-
lished correlation between the input and output of a given structure. Such
correlations may or may not change over time. In this type of model, we for-
mulated deterministic model where product of the simulation s fully requlated
by the parameter rates and the initial state.

Definition 3.2 ([16], Definition 2.2) A stochastic model is correlations be-
tween input and output of a given structure where both the inputs and outputs
are arbitrary.

Definition 3.3 (/20], Definition 3.3) Sets of equations conveying the level
of variation in terms of the variables and time are known as dynamical systems.
Examples of dynamical systems are:

(1). Non-autonomous-z' = G(t,y), where G:R"™' — R".

(ii). Discrete dynamical system- x[m + 1| = G,,,(x[m]), where G, : R™ —
R™ Vm € F,

(111). Autonomous discrete dynamical system-y[m + 1] = G(y[m])

Definition 3.4 (/19], Definition 5.3) Diabetes is a metabolism malfunction
condition that make blood to have a lot of sugar in the human body.

Definition 3.5 (/22], Definition 4.4) Co-morbidity is the presence of more
than one disease in the same person. For example; diabetes and hypertension,
diabetes and kidney failure or diabetes and COVID-19, malaria and pneumonia
among others.

Definition 3.6 (/23/, Definition 2.3) The parameter Ry is the number of
times infected individual infect other people in their entire infectious life.

4 Research methodology

These are some of the methods, inequalities,theories,programming and criteria
that will be used in the model formation and the analysis of the model formu-
lated. Deterministic differential equation will be used on model formation.
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4.1 The Kermack-MC kendrick model

This is one of the comparative models using time as independent variable (t)
and mathematic expression for the rate of transfer between the compartments
as derivatives with respect to time. This mathematical expression give differ-
ential equations which form a model. Example of compartments are suscepti-
ble (those can be infected), infection (those who have the disease), recovery/
removed ( those who recover from disease),vaccination(those have been vac-
cinated), exposed(those among the infected people) among others. From the
compartments we can come up with models such as SIR, SEIR , and SEIVR
among others.

4.2 Gronwall’s inequality

Gronwall s inequality is a deterministic analytical statement that converts an
inequality involving a function and its integral into an explicit, computable
bound. It is applicable when a nonnegative function is constrained by an ad-
ditive constant plus the integral of a nonnegative coefficient times the function
itself [14]. The inequality yields an exponential-type upper bound that controls
the function s growth in terms of the given coefficient and initial constant.

4.3 Routh-Hurwitz stability criterion

The Routh Hurwitz stability criterion is an algebraic method for determining
whether all roots of a polynomial lie strictly within the complex C. This
criterion provides a systematic procedure to test stability without explicitly
computing the roots of a polynomial.

4.4 Lyapunov technique (LT)

The LT is used to investigate stability properties of equilibrium points of dy-
namical systems without requiring explicit solutions of equations that govern
the dynamical system. In LT we construct an auxiliary scalar function, called
a Lyapunov function (LF), whose behavior along system trajectories provides
information about stability.

4.5 The next generation matrix (G)

This is a matrix denoted as G and used in determining the transmission terms
represented as M compartments because of recovery, death and any other
factors to other compartments [34]. From next generation matrix (GM™!),
we construct Ry [33].
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4.6 Jacobian Matrix, Determinant and Traces

Evaluating Jacobian Matrix [37] to come up with characteristic equations
which give eigenvalues. The negative eigenvalues will make Ry < 1 making
local stability of DFE stable, if eigenvalues are positive then Ry > 1 hence
unstable. From the jacobian matrix, we can solve determinant and trace then
applying Routh-Hurwitz condition. If Routh-Hurwitz condition holds then
there is stability of DFE. Consider

9n (X)

The determinant for the above jacobian matrix is called a Jacobian [40].

4.7 Normalized forward sensitivity index

This indicate how other parameters indicated in the study affect the Ry. These
parameters include death, rate of recovery, transmission rate among others.
Using set of assumptions, sensitivity analysis can be constructed to show how
parameters affect dependent variables such basic reproductive number in the
model. There two type of sensitivity analysis that is local and global. In local
sensitivity analysis one parameter is observed while others are put constant
some time refer as one-factor-at-a-time (OAT). In this work we are using global
sensitivity analysis as it was used in [41] which is calculated using normalized
forward sensitivity index. Using example of [42] as S;* = 4fo x £ where K

Ro
is the parameter being observed over basic reproduction number.

4.8 Numerical simulation technique

Numerical simulations can be done using Python which has jupyter note book
programming language or any other programming language in studies of this
nature [43]. After imputing differential equations, parameters and their values,
initial values and plotting. The command run give graphs for co-morbidity
under vaccination on recovery of patients. The graphs will be used to compare
the rate of recovery for the two models in our next paper [25]. The numerical
simulations is left for the next paper after this current one.
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5 Main results

5.1 Model formulation for COVID-19 Diabetes Comor-
bidity under vaccination

The total population size Ny has Infected individuals (symptomatic) but di-
abetic population (Icp(t)), Vaccinated individuals (Vp(t)), Recovered indi-
viduals diabetic population (Rp(t)). Modification parameters x1 and x2 are
accounting for the relative rate of recovery for those with the two diseases as
compared to those who are diabetes free. Other parameters remain the same
as in Diabetes free model. The following are some of the assumptions of the
model:

(). Vaccinated individuals are free from COVID-19 diabetic population and
free diabetic population.

i). Individuals recovered from COVID-19 diabetic population.
i). Illness can cause death for diabetic population or free diabetic population
(iv). Re-infection occur after recovered for diabetic population for COVID-19
)

. Vaccination can be done after recovery for those who were infected before
vaccination and susceptible for diabetic population or diabetic free.

We first consider compartment Sy for susceptible individuals diabetic popula-
tion and free diabetic population. In this class, population is increased by those
who are diabetic and those who are not diabetic at the assumed a constant
recruitment pg. The reduction is done by those who are infected by diabetes
and vaccinated. These reduced Susceptible class while death p due tnatural
cause reduces susceptible individuals whether they are diabetic or not.

dSy

—— = pg — A\pSy — uSy. 2
g~ P~ ApSh — 1o (2)

Considering compartment, Dy, of susceptible individuals of diabetic popula-
tion. Individuals who are having diabetes are the one in this class. Recruitment
is done from susceptible class at the rate of Ap which increases the number of
individuals. Some of individuals are infected by COVID-19 as asymptomatic or
symptomatic cause movement into two classes asymptomatic Lop and symp-
tomatic Iop class and rates of Ay and Ay respectively reducing the number of
individuals. In this class vaccination is done at rate #p reducing number to
vaccinated class Vp. Both natural death and diabetes induced death occur at
this class reducing the number of individuals at the rate 1 and d4 respectively.

dDpy

W:/\DSH—()Q—F)\Q—FQ—FM—FQD)SH (3)
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Compartment Vp (vaccinated individuals).
In this class individuals are vaccinated against COVID-19 to reduce the rate
of infection and re-infection, this can boost stability of the immunity system.
From this study, we assumed those who are vaccinated are free from COVID-19
infection. Those who are vaccinated are increasing the number of individuals.
From Sy class at the rate of 6, Dy class to Vp at the rate of 0p and Rp
class those who were infected before vaccination, recovered and now being
vaccinated at the rate of x. Individuals can be vaccinated but still die and
when death occurs, the number of individuals decreases.

dd‘/];D :/QRD+6)SH+9DDH—}LVD (4)
During COVID-19 infection, individuals get infected with disease but have
no signs and symptoms and they are infectious. Individuals get into this
class from diabetic class Dy and recovery class if there is re-infection. and
this increases the number of individuals. On the other hand, when there is
recovery the number of asymptomatic individuals reduce. If asymptomatic
persons developed signs and symptoms then they move to infected class Iop
at rate of 7. Both natural death, death due diseases or two diseases can occur
at the rate of u, § or dcp respectively.Modifying factor for recovery is x; help
in comparing rate of recovery for asymptomatic and symptomatic.

dt

Now L¢p consists of those who are infected and showing both sign and symp-
toms known are as symptomatic individuals. Individuals in this class have
COVID-19 and Diabetes. The recruitment is done in this class from dia-
betic class Dp, asymptomatic class Lep and recovery class Rp if there is
re-infection. The rate at which movement from these classes are done: Ao,
1y and 7 respectively and increase the number of individuals. When people
recover from this class, they move to recovery class Rp at v2. Natural attri-
tion, death caused by two diseases or COVID-19 alone can reduce the number
of individuals significantly. The rate of recovery for asymptomatic is not the
same as for symptomatic hence we have modifying factor xs. Therefore, we
have

=MSu+UV1Rp — (u+ 6+ 74 x17)Lep (5)

dt
For Rp, people recover from COVID-19 infection but still remain diabetic,
they come from asymptomatic class Lop and symptomatic Iop. The rr differ
from one class to another hence modifying factors x; and y» respectively. For
those who recovered need to be vaccinated, if they were not vaccinated before
infection,this done at rate of x to vaccination class V. Re-infection can occur

= XSy + VR + 7L — (40 + dcp + x272)lep (6)
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Table 6: Parameters and interpretations of model with diabetic population

’ Parameter \ Interpretations

S

Lep

Y1icD
Y2cD

B
X1
X2

Susceptible population

Diabetic individuals

Carriers individuals (infected and infectious but asymptomatic)
with diabetes

Infected individuals (symptomatic)

Recovered individuals

Vaccinated individuals

Rate of recruitment to the susceptible individuals

Rate of recruitment to the carrier individuals

Rate of recruitment to the infected individuals

Rate of recruitment to the diabetic individuals

Rate of recruitment from susceptible to the vaccinated individuals
Rate of recruitment from diabetes to the vaccinated individuals
Rate of recruitment from recovered to the vaccinated individuals
Natural death rate

Rate of recovery for carrier individuals

Rate of recovery for infected individuals

Rate of transfer of carrier individuals to the infected class
Effective contact rate for COVID-19 transmission

Death rate due to corona virus

Rate of disease transmission directly from humans
Modification parameter carrier to recovery with both diseases
Modification parameter infected to recovery with both diseases

Modification parameter for infected on transmission

after recovery cause some individuals to be re-infected asymptomatically (Lcp)
or symptomatically (Iop) at the rate of 1y or ¥ respectively.

dR
=2 _ x1Y2lep + xeniLep — (1 + Y2 + 91 + K)Rp (7)

dt

The main model in this study is:

dSy
dt

dDy
dt

dLecp

dt
dVp

dt

PH — ApSy — MSH
ApSy — (M + X+ 60+ pu+60p)Sy
MSy+ U1 Rp — (u+ 0+ 7+ x171)Lep

/QRD + ‘95[{ + QDDH — ,uVD
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dl

dCtD = XSy +UVaR+7L — (n+ 3+ x272)Iep (12)
dRp
i x1V2lep + xeiLep — (1 + 2 + 41 + K)Rp. (13)

At this juncture we do analysis of COVID-19 and Diabetes comorbidity.

5.2 Positivity of solution

Proposition 5.1 From the Model 8 Let the initial conditions be be denoted
as (Sy,Du,Lep,Vp,Ilep and Rp)(0) > 0. There is complete positivity for the
solution set Sg,Dy,Lop,Vp,lop and Rp(t).

Proof. Taking Model 8, we have

ds
cTH = pu— (Aa+p)Su (14)
dDy
W = )\SH—()\1+)\2—|—¢9(1+,U+50{)DH (15)
dL.
dtd = MDDy +V1Rg— (p+0+ 7+ x17 + 6ac) Lea (16)
dV;
dTD = KRy+0Dy — (14 04)Vy (17)
dl.,
dtd = XDy +YoRg+ TLea — (1 + 0 + X2Y2 + 6dc) Lea (18)
dRp
= Xeelat XMl — (1 + o + 1 + K+ 0a) Ry (19)
Now consider the first equation in the model above % = pg — (Mg + 1)Su
then we have s
T%H =pr — (Aa+ 1)Su (20)
dsS
— 2 (a+ w)Sn (21)
Separating the variables yields
s
> (N + p)dt (22)
Su
Integrating the differential inequality yields
In Si(| -s0") = (Aa + p)ta (| -£5) (23)
and applying the initial conditions t = 0,57 = Sy on
S, > SpePati) > (24)

since A\p + p > 0. Applying same procedure to the remaining variables will
indicate all are positive for all t > 0.
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5.3 Boundedness of solution

We sum up the right hand side of four equations of the compartmentalized
model 8 gives N = Sy + Dy + Leg + Vi + 1.g + Ry, we have

dN B dSg dVy dl.g dL. dR4
s a T T a T e T a

(25)

and substitution of corresponding value from model 8 and working out gives

dN
’ =AN—04(Dg+Vi+Ra) —04c(Lea+1ea) — (Su+ Dy~ Lea+ Va+Lea+ Ra) .
(26)
Thus,
dN
o =N —u(Su + Dyt + Leg + Va + lea + Ra) (27)
and so
dN
— = A — uN. 28
o I (28)
Therefore we obtain
dN
— < A—uN 29
o SA—uN, (29)
Hence, we have
dN

Applying integrating factor and separation of variables and solving for 30 we
get

N(t) <

==

+ N(0)e " (31)
From Inequality 31, it can be clearly seen that

0< N(t) < 2 + N(0)e M, (32)

where N(0) is the initial population. Thus, as t — oo, we have

A
0<N(t) < m (33)

This indicates that the model 8 is well-posed mathematically and epidemio-
logically and it is sufficient to consider its solution. It is uniformly bounded
and represent human population which is non negative for all time ¢ > 0.
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5.4 Disease Free Equilibrium (DEF)

We consider the DEF denoted by E°(SY, DY, L%, VD I9)). Using model 8 re-
duced as without Ry, we have

dSy
SOH — ()
o pr — (Aa+ 1)Su
dD
TtH = )\SH_<)\1+)\2+9d+ﬂ+5d)DH
chd
i MDy + 1 Rg — (1 + 0+ 7+ X171 + 0de) Lea
dv,
ditd = ’fRd+9DH_(M+5d)‘/d
dl,
dtd = MNDyg +YsRi+ TLeg — (u+ 8 + x2v2 + Ode) Lea-
Consider
Sy = PH__ 34
H ()\d—i-,u) ( )

Considering the compartmentalized System 8, we obtain from the second equa-
tion

Diy = |

D 35
Oa + 1+ 6a) (35)

and substituting Equation 34 into Equation 35 we obtain

A\pH

DY —
B N+ 1) (0g + o+ 0q)

Using the forth equation of the compartmentalized system 8, we get

0Dy
VO = . 37
T = Tut oy (37)

Substituting Equation 36 and Equation 37 and solving for V), we get

O\pu
Vo= . 38
d (Aa+ 1) (0q + p 4 6q) (1 + 6a) (38)

Using Equation 34, Equation 36 and Equation 38, the DFE E°, of model 8 is

EO(S0 DO 70 10 j0y — PH
(SH7 H» cd?‘/d7 cd) (/\d+,u>’ A 3 B 7070707 (39)

where A = (Ag+ p)(0g + p+ 6q) and B = (Mg + ) (0g + 1+ dq) (11 + g).
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5.4.1 The Basic Reproduction Number

We consider a population with those having diabetes but are being affected
with COVID-19. From the model infection classes are I.; and L.;. The infec-
tious subsystem is reduced to:

dL..

dtd = MDp+Uv1Ri— (464 7+ x17 + 6dc) Lea;
dl,

dtd = MDp+YoRg+ TLeg — (1 + 8+ X272 + 0dc) L ea-

The infection rate matrix F' can be constructed as; new infection is divided into
two where a fraction of those who are causing new infection at L class diabetic
population and those who are causing new infection diabetic population at [
class at 1 —n and n respectively. Force of infection: A = BL% + ﬁzﬁ and new
infections; (1 — n)A\Dy into L class and (n)ADy into I so we have

P ) a0

Substituting A into Equation 40 we have

(1—n)(BLE + 8:1L) Dy
F= ( n(But + prL)Dy ) | (4D

The Jacobian of F' becomes

Dy [ (1—=n)(Br (1—n)(Br
F=_= 42
N ( B (B (42)
and the Jacobian matrix is deduced as
(u+0+7+x17 + 0dc) 0
N ) 43
o ( -7 (e + 0+ x272 + dac) (43)
Hence,
(40 47+ xam + dae) 0
V= 44
( -7 (e + 0+ x272 + bac) (44)

and to calculate the inverse of V', we get the determinant of V' as

detV = [=(p+d+7+ x171 + 0ac)|[— (1t + 0 + X272 + bac)]
= (W+o+7+x171 +dac)(pt + 3 + x2y2 + dac)

So,

1
vl = ( - (,Ut+(5+7'+7)_(171+5dc) (1) ) ) (45)

pAO+THXx1714+H0de) (A-0+x2y24+04e))  (B+Hd+Xx272+04c)
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Therefore,
(1-n)B
py-1_ DPr A Gt ) (46)
N nfr + nﬂ T nBr )
(uto+7+71) Turotr+7) (pto+72)  (utotx2v2+0ac)

where A = ¢ (L-m)Br + (1 —n)(

-
pA+0+7+x171+04c) BI ((4+0+7+x171+04c) (u+6+x272+04c)) )

The two eigenvalues represent asymptomatic class population L., and symp-
tomatic infected class I.4 diabetic population hence we have two Ry, L.q and
Ry, I.4. We add the two and get the total basic reproduction number Ry, =
Ry, L+ Ry, I.

So, DJ[( (1-n)Br _, ) + (1 . n)

T pE—
5104 ((u+5+T+X171+5dc)(u+5+><2’y2+5dc))] ,

N L(pt6+7+x171+6ac
and
D [ s J—n
N “(p+ 6+ X272 + dac) '
Hence,
D 1—
RoLoy = D o

N [(M+5+T+X171+5dc)

+ (1—n)(Bs, g

(1t + 0+ 7+ x171 + 0ac) (1t + 0 + X272 + 0ac)]’

D nBr, . .
Ry, I.q = ﬁm and adding the two gives,

— D7H (1_n)ﬁLcd _ T nﬁ[cd
Ro =T [.(u+5+T+xw1+5dc),+(1 ") (Br.q [(u+5+T+XW1+6dc)(u+5+xzvz+5dc)+(u+5+><272+5dc)]
Rearranging R, we obtain

_ D (1-n)BL, B, (1-n)7
Ro = TH[(u+5+T+x1“r1d+6dc) (H+5+X2z’2+5dc>((ﬂ+5+T+X171+6dc) n)]
0 _ A _ A ~ 0
Now, at DFE where D}, = Wgﬂw anﬁd N =2 vv(e1 su)bstltute DY, and
: . —-n —n)T
N into Ry to get Ro = Ginloimiig T Grorm (0 T Gaorrn )|

From Ry we can conclude that:

(i). o ﬁ:zﬁzﬁ 5, infections caused by only those who are in Leg class.
(ii). (HH%%MM((MJFH(:;;);M&) + n) infections caused by those who went

straight to I.; class nm and those who enter through L4

: 1-n)T
showed signs and symptoms then moved to [ Ewn Xi 172 ) ( e +(T =y 1)71 ) ).

. o (1-n)Br, Br,
(iii). When 7 =0, we have Ro = (Hi#) [(#+5+X1’71+§dc)) T (#+5+X2$2+5dc)n]'
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5.5 The Local Stability of DFE for Diabetic Population

We now analyze the local stability of DFE for diabetic population. We state
the result below.

Theorem 5.2 The DFE for diabetic population of Model 8 is locally asymp-
totically stable.

Proof. The DFE for diabetic population of Model 8 can be studied by evalu-
ating its Jacobian matrix given as:

X 0 0 0 0 0
A=Y 0 0 0 0
0 _ O >\1 _Z 0 O ’(/)1
Je = 0o 4 0 —-P 0 K ’ (47)
O )\2 T 0 —Q wg
0 0 xm 0 x2v2 —R

where X = —(Ag+p), Y = M+ X404+ 1+64), Z = (u+5+7+x171 +0dc),
P=(u+64), Q= (u+9+ x272 + ) and R = (1 + b2 + ¢1 + £+ 04). The
characteristic equation is [—((Ag+ £)][(A1 + A2+ 0a+ o+ 0a) | [— (e 4 6a) | [— (0 +
O+ 7+ x17 + dac)] [— (1t 4 0 + xov2 + dac)| [ (1t + P2 + Y1 + Kk + 64)] = 0.
Therefore, A = —(u + 0 + X272 + d4c), —(Ad + p)and — (u + d4) making Ry
negative. This will reduce matrix J% to

-G 0 0
Jo=1| M —H 1 |, (48)
0 xm —L

where G = (M + X+ 04+ p+08q), H= (p+0+7+ x171 + dae) and L =
(i + g + 1 + K+ dgq). The negative trace of the Matrix 47 is —[(A; + Ao +
Oa+ 11+ 04) + (40 4+ 7+ x171 + 0ac) + (1 + V2 + 11 + K+ 0q)], and det(J}) is
(A Ao +0g+p4-0a) [(V1x171) — (6 +T+X 171 Fde) (ppt-1P2+11 +K+04) )] which
is positive provided (1x171) > ((L+0+ 7+ X171 + Oac) (L + o + 101 + K+ 84)).
Routh-Hurwitz condition holds hence DFE for diabetic population is LAS.

5.6 The Global Stability of DFE for Diabetic popula-
tion

We do the analysis of DFE for diabetic population of Model 8 to establish
if it is GAS. From model 8, w have X=(Sy, Dy, V;) and Z=(L.4,1.q, Ra),
therefore we obtain

g — (0+ 1)Sy
H(X,O)z(p 9515_#"& ) (49)
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which is equivalent to

—C 0 0
HX,0=| M -D w |, (50)
0 xm —F

where C = (M + X+ 053+ p+04), D =(u+0+7+ x171 + 04c) and E =
(419 +11+K+64). Equation 71 has a unique equilibrium point at X = (24~

(Aatn)’
G O si752) " CaiOries s Giray e s GAS. Now, we get

K 0 U
P= T J o ) (51)
X1 X2y —O

where K = %DH_ (UA0+7+x17 +64c), J = %DH_ (11 +0+x272 +dac) and
O = (u+ 1Yy + U1 + Kk + 04). From matrix P, we do an evaluation and obtain

PZ = f[DHL— (L+0+7+ x171 + bac) L
+ 77/J1R7'L+]€DHI— (40 4 x272 + dac) L
+ YoRx1L + xov2l — (10 + Y2 + 1 + K + dg) R.

and
GZ = f[DHL_(M+5+T+X1%+5dc)L
+ YU RTL+ ]f/'DHI — (48 + xoy2 + dac) I
+ YoRx1mL + xov2l — (pp+ V2 + 1 + K + dg) R.
So,

GZ=PZ—-GZ=0. (52)
GZ = [0]”. Therefore, GZ = 0 and hence E° is GAS.

5.7 The Endemic Equilibrium (EE)

We denote EE by E*(Sy;, Dy, V.S, Liy, 1Y, RS) and we carry out the analysis
as given by the next result.

Theorem 5.3 The Endemic equilibrium E*(Sy, D3, V., LY, 1%, R}) exists
provided that Ry > 1.
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Proof. Using model 8 and equating each equation to zero we have

ds; .
dH = pm— (Na+p)Sy
t
dD3
dtH = AS; — (AL + Ao+ 044+ p+64) D
dLZd * * *
pral MDDy + iRy — (46 + 7+ xam + 6ae) Ly
avy
dtD = KR+ 0D} — (u+ 6V
dI* * * * *
d;d = XD +voRy+TLey — (1 + 6+ X272 + 0ac) Lo
dR7 . » x
dtD = Xovelog + xamLeg — (B + Y2 + 91 + K+ da) Ry
So,
* PH
Sy =-——. 53
(e vEan o
From the the second equation we have
AST
Dy = H : 54
TN+ A+ 04+ 1+ 0a) (54)
Substituting Equation 53 into equation 54, we obtain
A\pH
D3 = : 55
T Mg+ )+ Xg + 04+ p+ 64) (55)
Considering the third equation
Ao D3 R;
LZd - 228 - 1/)2 d ) (56)
(L+0+7+x17 + dac)
and substituting Equation 55 into Equation 56 we get
I — AP n i R
DT A0+ T+ xam +0a) Aa+ )M+ Ao +0a+p+04)  (p+5+T+xam +5(dc>)’
57
and from the fifth equation we get
Ao D} L R}
=2 7L+ e d (58)
(1t + 0+ x272 + )
Now, substituting equation 55 into equation 58, we get
= Ao Ap L, + o R (59)

Mg+ )AL+ A2+ 04+ p+0) (1t + 6 + x2v2 + 0ae)  (u+ 8+ x2y2 + bac)
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From the last equation we have

. Yolog + x171L7%
d — ) (60)
(4o + 1 + K+ 0a)

Now, substituting Ry into equation 58, we have

I — Ropu I (TL%; + Va2 Ry A2 (61)
7 Na+ )1 + Mg + 0+ o+ 64) (11 + 6 + x2) Ry

Let 2 =p+ 0+ 74 x171 + e,
I1:>\1+)\2+0d+ﬂ+5d
To =N+ 1
Tr3=p+0+7T+ X171 + ddc
Ty =+ o+ U1+ K+ g
LU5:,LL+6+X2

Then we have

APHA R
= PHAL i U1 d (62)
TToX1 XT3
Ig+ L
R = Yoded T X171 cd7 (63)
Ty
« Ropr  (TLeq + 2 RY) A2
I = 4
cd X215 + Ro ’ (6 )
Substituting Equation 63 into equation 62, we obtain
X APHANT3Ty PY1v21ea
L, = . 65
T (zarmo) (z3za — Yixam) | (T3Ta — Yixan) (65)
Again substituting Equation 63 into Equation 64
j. Ropn n Yadaleq n TTaA2 + R0¢2)\2Lcd. (66)

TaT1T5 Rozy Rozy

Let N = z374 — v1xam
N1 = 22129
Ny = 291125
Ng = IT3%4.
Substituting Equation 65 into Equation 66 and working out gives
NiNzs — ApgAitadaNs
Ny

IY; = RipuzaN — ( JRo + (AaNzy + 12 dath1y2 + NipaAa).  (67)

Equating Equation 67 to zero gives,

N1N1L'4 — )\pH}\l'I/)Q)\QNB

N, JRo+ (AaNwy+ooth1y2 + Niho Ao — I7;) = 0. (68)

RiprasN — (

We conclude by saying there is only one possible sign change at ( +,-,4).
When Ry is positive then S, D3, V), L, 1%, R are also positive.
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5.8 The Local Stability of EE for Diabetic population

The Jacobian at the endemic equilibrium of system 8 below

dsy,
= —_ )\ *

o pr — (A + p)Sy

dD*

dtH = A — (M + A+ 0a+ p+0a) Dy

dL*

d;d = MDD+ Ry — (u+ 30+ 7+ x1m + dac) LYy

AV

dtD = KRy +0Dy — (u+0q)Vy

dI*

d;d = XDy + Ry 4+ 7L — (40 + X272 + 0dc) Ly

dR*

dtD = Xoveliy+ xam Ly — (u+ e + 1 + K+ 64) Ry,

is given by
- 0 0 0 0 0
A —A 0 0 0 0
w | 0N —e o 0
J(E) = 0 6 0 —-Z 0 k|7 (69)

0 X 7 7y —II
0 0 X171 0  xo27e -

where I' = (A\g+p), A= M+ X+ 04+ p+684), © = (u+0+7+x171 + bac),
== (,u+5d), II = (M+5+X272+(5dc> and Y = (M+¢2+¢1+/€+5d).
From matrix 69, there is one eigenvalue —(p + d4). The other eigenvalues can
be deduced from the reduced matrix define as

-T 0 0 0 0
A = 0 0 0
J(E) = 0 A =0 0 Un
0 Ao T —Q
0 0 x1m X2 —w

: (70)

WhereT:()\d—l-[L),(I):()\l—f—)\g—l-@d—l—#—l—éd), U = ([L—|—5+7'+X1’71+(5d0),
Q= (404 x272 + da) and @ = (p + V2 + 11 + K + 0g).
Let, M = (g + 1)

My = (Ag + )

My = (p+0+7+x17 + dac)

Ms = (p+ 6 + X272 + ddc)

My = (pp+ 2 + 91 + K+ 0a)
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Then,
-M 0 0 0 0
A =M 0 0 0
0 N My, 0 (71)
0 N T =M
0 0  xim xeye —My

5.9 The Global Stability of EE for Diabetic population

We use Lyapunov’s direct method and LaSalle’s principle to establish the
global stability of equilibria.

Theorem 5.4 If Ry > 1 then the EE for diabetic population given and
denoted by E*(St, Dy, Vi, Ly, 1Y, RY) ) is GAS strictly inside Q.

Proof. Consider a non-linear LF V, on (Sg,Du, Vi, Lea, Iea,Ra):€ Q C RS
whereby (Sy,Dp,Va, Lea, Ica,Rq) > 0. Then we have that

1 Su 1 Dy 1 Vp

P.: (S, Du, Vi, Legy Ly Ra) = =(=r — 12+ (=0 — 12+ = (v — 1)?
2' 53, 2 D3, 2V}

1 Lcd 2 1 ch 2 1 Rd 2

- 1 e —(=4 12,

+ 2(de ) +2(1;d ) +2(R;; )

So, P, is strictly inside 2. Therefore, P, has attained its minimum at E*
globally on Q and P,.:(Sy,Dg,Vy, Led, Iea,Rq) = 0. Moreover,

1 1 |

AP, _ LSy dSy 1 Dy dDy 1 L dl
& oSh\sy P Tat T Dppy P ar TIn'Tn Va
1V, . dVy 1 Lg .dls 1 Ry . dRq
Sy ey (M gy
Ve T e Ve T e Y

+

The derivatives of (Sy,Dg, Vi, Leq, 1ea,Rq) from 8 are converted and after
some manipulation shows stability. Hence, V! < 0. V! = 0 if and only if
Sy =S¥, Lea= L, I.a= 12, Vi =V}, Dy = D}; and Ry = R};. Thus, E*
is GAS in the interior of the region ).

5.10 Sensitivity Analysis

Parameter sensitivity shows how some parameters within the system, have
higher or lower degree of influencing model’s stability We consider the variables

below as given in the model.
Ry = ApBapm

(u+0+x272+0dc) (Aata) (Oat+p+da)
dRy __ ABpH
do (p+0+x272+04dc) (Aa+h) (Ba+1+04)
dRy __ pBapu

dX T (pHotxev2+6ac) Aatu) (0g+p+d4)
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Table 7: Parameters values, source and description for stability

’ Parameter \ Interpretations

PH RRTS individuals
0 RREFS to the vaccinated individuals DP
0D RRFD to the vaccinated individuals
KD RRFR to the vaccinated individuals DP
Y1ieD Rate of recovery for carrier individuals DP
Y2cD Rate of recovery for infected individuals but DP
TCD Rate of transfer of carrier individuals to the infected class DP
I} Effective contact rate for COVID-19 transmission DP
I Natural death rate diabetic population
) Death rate due to corona virus but with diabetes
Modification parameter for infected on transmission
X1 Modification parameter carrier to recovery with both diseases
X2 Modification parameter infected to recovery with both diseases
Piep Rate of reinfections for carrier individuals but with diabetes
Yacp Rate of reinfections for infected individuals but with diabetes
dRg _ pBaA
dpg (u+0+x272+0dc) (Aa+i) (Oa+r+dd)
dRy _ PO
dp (ptd+x272+0ac) (Aa+p) (Oatp+da)
dRo _ _ Bpm paX
dfg Oa(pt+o+x272+0de) (Aati) (Oatpt+da)
dRy _ _ Bpr o)
dy2 y2 (pt+6+x272+0de) (Aa+1) (Oa+i+04)
dRy _ _ Bpu o
dx2 x2(p+d+x272+0de) (Aa+i) (fa+1+0a)
Ro=%F0 .
therefore Sp= 7 X &
0
Ro _ Ro __ Ro _ Ro __ Ry _ 1 @Ry _ _ 1 QRy _ _ 1
RSaO _11’ *5;%\0 - 1’1517}(1) =1,55" =1 5¢) = =5, %, = X2’ Syl = S’
S’Yzo = Ty S’Ylo = T

Parameters such as 3, a, 6; and py which have positive index increase the
Ry. These parameters should be controlled if not managed by reducing their
effect in order to reduce R,. Those parameters with negative index such as
V2,71, X2, andx; reduce Ry. An increase in these parameter will reduce Ry and
COVID-19 will be managed. By reduction of Ry, COVID-19 will be controlled
and managed on diabetic population and less people will have severe illness,
less deaths and less admission in ICU or hospital. Rate of recovery and rate
of vaccination play a vital role when its come to control of COVID-19 hence
more people should be vaccinated. This will boost the rate of recovery hence
more people will recover faster. The analytical results in this work can be
done using Python under jupyter notebook to conduct numerical simulations
for model 8 using parameter given in the table below. The higher the rate
of recovery, the more individuals get recovered. As rate of recovery reduces,
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less people get recovered. As more people get recovered and vaccinated, less
individuals get reinfected as diabetic population take control measurers and
administer their medicine proper. As more people get vaccinated, few become
asymptomatic and symptomatic and the attack is not persisting. This make
more people to recover hence less asymptomatic and symptomatic population.
The effect of varying gamma is low generally compare to other populations.
As gamma increases, more individuals become vaccinated and if gamma is
low then few will be vaccinated. In a lower or higher gamma, the vaccinated
population continues to increase as more people get vaccinated and few are
infected. General observation is that the rate of recovery is slow when there
is co-morbidity. We conclude that recovery rate is low on individuals with
COVID-19 disease under diabetic population but high on individuals with only
COVID-19 under free diabetic population. This make the death rate, number
of individuals admitted in the hospital to be higher on those with COVID-19
and Diabetes compared to those with COVID-19 only.

6 Open Problems

Certain natural problems emanate from this research. The following prob-
lems and questions can be considered for future research and further analy-
sis. Problem 1: Can one carry out a numerical analysis of the comorbidity?
Problem 2: There is need for bifurcation analysis of the model for robustness.
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