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Abstract

There is always a high probability of finding individuals in-
fected by COVID-19 to be having other underlying diseases.
Those who have these two or more diseases died at higher
rate, four times, compared to those who are suffering from one
disease. For individuals under comorbidity, attrition rate is
higher meaning the rate of recovery is low and more resources
are used in cases of comorbidity. Containment measures for
COVID-19 such as quarantine and social distancing may lead
to a decline in exercising and lack of a balanced diet, which
are key for managing diabetic complications such as vision
loss and kidney failure. In this note, we analyze comorbidity
under vaccination.

Keywords: COVID-19, Diabetes, Comorbidity, Vaccination.
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1 Introduction

There is existence of comorbidities of diseases amongst individuals who have
COVID-19 and people suffering from comorbidities tend to have a weaker im-
munity system, making their bodies vulnerable to any disease attacks thereby
leading to low recovery rate and high death rate [8]. Considering COVID-19
and diabetes as a comorbidities, it takes a longer period for recovery and death
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Table 1: Parameters and description of SIR population

Symbol Parameter

S Susceptible population
I Infected population
R Recovery population
β Transmission probability
γ death/recovery rate

may occur faster compared to those who have COVID-19 only.
Mathematical epidemiologists are recognized as pioneers of mathematical epi-
demiology. The work of [25] came up with susceptibility concept and Sir Ross
and Kermack and Mckendrick were the first people to formulate mathematical
models and develpoed a malaria infection model, whose result showed malaria
can be reduced if the population of mosquitoes is decreased as malaria spreads
through mosquito bites [9]. From his observation, it was believed that he came
up with the important concept in epidemiology and later it was known as R0.
Certain studies used R0 on compartmental model for diseases, and they discov-
ered that there was recovery as result of permanent immunity and re-infection
was also possible [10]. Later, an expansion was done on epidemiology by [1]
where they introduced latent (exposed) period in his model as one of the com-
partmental (infected individual cannot infect others in the population).
Leading cause of deaths worldwide remain to be infectious diseases includ-
ing Ebola, COVID-19 among others. The transmission of these infections
is being explored and analyzed using mathematical models. The author in
[13] formulated the first mathematical model which he used to analyze how
vaccination of a healthy individual against smallpox can be effective during
attack with the disease. The study by [14] developed a discrete time model
of measles epidemic that reoccurs within a population. From a differential
equation done by [15] for malaria as a host-vector disease, he recommended
that the mosquitoes population should decrease in order to control malaria.
The work was expanded by [17] where they formulated the first compartmen-
tal model having susceptible-infected-recovery (SIR) as parameters. Another
susceptible-exposed-infected-recovered (SEIR) populations model was formu-
lated and numerically analyzed by [39] which examined seasonality in recurrent
epidemics. The model was formulated as shown below:

dW

dt
= −βSI

dM

dt
= βSI − κE
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Table 2: Parameters and description of SEIR population

Symbol Parameter

Q Susceptible population
M Exposed population
A Infected population
N Recovery population
β Transmission probability
γ death/recovery rate
κ rate exposed people

dA

dt
= κE − γI

dN

dt
= γI.

The COVID-19 is an on-going disease and spread in most counties and con-
tainment measures like quarantine and isolation of infected individuals among
others are being applied. In this model [3], the disease progress has been de-
termined by basic reproduction number. Data from different countries were
considered and analysis showed that the infection peak was reached 10 days
after restriction measures were introduced. It was suggested from the model
that the introduction of quarantine was not sufficient and stricter measures
were further needed for the control of corona virus infection [16]. This model
had several limitations such as the assumption of single incubation period,
where other available data contradicting the 10 days according to this model
and state the incubation could take up to four weeks. Therefore, distribu-
tion delay was suggested to be used [20]. They came up with the model
of Susceptible-infected-recovery model(SIR). Other parameters and variables
were not included like dr and latent class.

dS

dt
= −κIS

dI

dt
= κIS − βI − σI

dR

dt
= βI

Another quarantine model was introduced where a sub-population of asymp-
tomatic individuals was considered. As the incubation period ended, the dis-
ease symptoms manifested and individuals were isolated in the quarantine to
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Table 3: Parameters and description of symptomatic individuals

Symbol Parameter

S Susceptible population
I Infected population
R Recovery population
κ Transmission rate
β Recovery rate
β Mortality rate due to infection

Table 4: Parameters and description of asymptomatic individuals

Symbol Parameter

S Susceptible population
I Latent Infected individuals
τ Incubation period
t− τ Individuals infected rate before incubation period

avoid infecting others [23]. As a result, they could not spread the infection any
more. The model did not consider the movement of people and how this can
infect others. From the model, no co-morbidity, vaccination, effect of infection
during asymptomatic period was not considered [24] of which are the interest
in this work. The model became as follows:

dS

dt
= −κI(t)S(t)

dI

dt
= κI(t)S(t)− κI(t− τ)S(t− τ)

The model above in [13] showed exposure time as a parameter was developed
and analyzed. For a local setting, such as large social gatherings when R0 of
2 and a 14 day infection period, it was possible for an infected person staying
more than 9 hours in a social gathering to infect other people. Recommen-
dations from the model show that those who are attending a social gathering
should have protection [29]. Due to continuous progress, surveillance and up-
date predictions which are necessary, this can cause a change in the prescription
of the model hence more research should be carried out. An exposed individual
in such a setting can be protected from being infected by staying protected
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Table 5: Parameters and description of SIE model without recovery

Symbol Parameter

S Susceptible population
I Infected population
E Exposed population
β Rate of infection
α Level of protection of exposed person
c The arrival-departure rate of attendees
τ Time scale and turning factor to adjust parameters

(via washing of hands and/or use of face mask) [28]. The β was derived based
on the known R0, population size of the susceptible S0 hence β = R0

τ
+ R0

τS0
.

The model did not include the Recovery class as more people are recovering
from the disease, vaccination class, parameters like natural death rate and
death induced by COVID-19 infection and comorbidity such as diabetes were
not used [30]. Model description is as follows:

dS

dt
= −βS 1

N
+ αE + c

dE

dt
= βS

1

N
− (1− α)τE

dI

dt
= (1− α)τE

A model containing isolation class [31], has been formulated and analyzed.
From analytical results, close physical human interaction causes the spread of
COVID-19. They recommended that infected individuals should be isolated
to reduce further disease spread. As disease infection cases rise, they recom-
mend realtime data to be used and more complicated models such as models
for co-morbidity which had not been yet studied.
It has been observed in [32] and [33] that the disease was transmitted from
infected people and infected surfaces. When infected population recover per-
manently or get permanent protection, then we have R0 < 1. But, when there
was no permanent recovery or protection, then re-infection occurs and R0=1
hence undergo backward bifurcation. Due to re-appearance of the disease,
vaccination, screening and isolation of infected individual were recommended.
Further research and development of models should be carried out as they
did not factor in vaccination as a mean of re-infection and future mass trans-
mission. This study develops a mathematical model for co-morbidity under
vaccination to fill in some of the knowledge gaps.
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2 Literature review

Diabetes is known as a globally silent sweeping epidemic mostly contributed
by increasing number of people becoming sick of the disease [34]. A model
wasndeveloped that had a resonance period of 2.9847134 hours which was far
below that of existing model of 3.5232581 hours illustrating that the glucose
concentration normalized quickly [35]. The model only focussed on internal
rate of increase of the blood glucose concentration. Recommendation was
made for a model that would factor the external rate of increase of the blood
glucose concentration [36]. The model was based on detection of diabetes but
a co-morbidity of COVID-19 and vaccination was not considered. Below is the
model formulated:

dg

dt
= −ag − bh+ fe

dh

dt
= cg − dh+ ke

de

dt
= −lg −mh+ ne.

In [37] the author developed a malaria-Rotavirus co-infection model. The
results showed that when there is treatment of co-infected individuals, there
is reduction on the effect of the two diseases. Global stability can be achieved
if maximum protection was given to co-infection. Co-infection analysis of the
model showed that it underwent forward bifurcation. Numerical simulation
done using reasonable parameter values indicated that co-morbidity sustained
whenever Rmr was more than unit but failed when it was less than one [38].
They dwelt on the co-infection of malaria and rotavirus but we will be dealing
with diabetes and COVID-19 under vaccination comparing the rate of recovery
when you have co-morbidity. The model was developed as follows:

dSH

dt
= ΛH − βmbmIv

NH

SH − βR
LR + LMR + ϕ(LR + LMR)

NH

SH

− µHSH + γ1LM + γ2LR + γ3LMR

dIM
dt

=
βmbmIv
NH

SH − θβR
LR + LMR + ϕ(LR + LMR)

NH

IM − γ1IM − ϑMIM

dLR

dt
= βR

LR + LMR + ϕ(IR + IMR)

NH

SH − βmbmIv
NH

LR − µHLR − ψHLR

which is equal to

dSH

dt
= ΛH − βmbmIv

NH

SH − βR
LR + LMR + ϕ(LR + LMR)

NH

SH

− µHSH + γ1LM + γ2LR + γ3LMR
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dIM
dt

=
βmbmIv
NH

SH − θβR
LR + LMR + ϕ(LR + LMR)

NH

IM

− γ1IM − µHIM − ϑMIM .

In [40], the researchers developed and analyzed model of children with co-
morbidity of malaria and pneumonia. The results showed that co-infection
reduces due to low transmission rate. The rate of co-infection should be low-
ered by treating both diseases earlier before they become comorbidity. While
the model focussed on malaria and pneumonia, we have developed a model
of COVID19-Diabetes comorbidity considering vaccination. The model was
developed as below;

dSH

dt
= ΛH − λMSH − λPSH − µH)SH + πIM + τIP + ϕIMP

dIM
dt

= λMSH − ϑλP IM − µHIM − πIM − σMIMP

dIP
dt

= λPSH − ελMIP − µH)IP − τIP − σpIp

dIMP

dt
= ελMIP −−ϑλP IM − (µH − σMP + σp + σM + ϕ)IMP

dSV

dt
= ΛVNV − λV SV − µV SV

dSV

dt
= λV SV − µV IV

The diabetes burden and its complications [6] was developed and analyzed.
The findings were given in different scenarios to stress on its important features.
Those with complications took time to recovery and the rate of death was high
compared to those who did not have complications given COVID-19 was one
of the complications. A lot of care should be taken when managing diabetic
individuals with complications compared to those without, hence there is need
to study the co-morbidity of CDUV.
The work of [41] developed and analysed a very instrumental model. As a
result, the transmission and contacting disease again after recovery was higher.
From the model, they did not consider the asymptomatic class for COVID-19
and COVID-19 with comorbidity. In our model, we consider diabetes as a
comorbidity and include asymptomatic class for COVID-19 and latent class
for CDUV. Individuals can infectious while having or without symptoms and
so can infect people with diabetes hence it is necessary to study a model for
COVID-19 and diabetes [42]. The model developed as shown below:

dSH

dt
= ΛH − (λCV +ΘCM + µH)SH
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dSCM

dt
= ΘCMSH − χCMλCV SCM − µHSCM

dICV

dt
= λCV SH − (η1 + φI1 + µH)ICV + ψ1λCVRCV

dQCV

dt
= η1ICV + (φQ1 + δ1 + µH)QCV

dRCV

dt
= φI1ICV + φQ1QCV − µHRCV − ψ1λCVRCV

dICV CM

dt
= χCMλCV SCM − (η2 + φI2 + µH)ICV CM + ψ2λCVRCV

dQCV CM

dt
= η2ICV CM + (δ1 + δ2 + φQ2 + µH)QCV CM

dRCV CM

dt
= φI2ICV CM + φQ2QCV CM − µHRCM − ψ2λCVRCM ,

To characterize the optimal controls, Pontryagins maximum principle [43] was
used and iterative method was used to solved optimality system. They per-
formed numerical simulations and the effects of diabetics on recovery of these
complication was not considered. The complications were general and they
did not analyze COVID-19 as a comorbidity [18].
It was observed in [2] that those who were diabetic had higher chances of being
infected with COVID-19 compared to non diabetic. From the study vaccina-
tion class, rate of recovery were not considered as well as the rate of death
which will be done in this paper. The following sets of linear equations were
applied in the study:

dSd

dt
= Φ− α1Sd − α2SdIc − µSd

dD

dt
= α1Sd + δRc − ρDIc − µD

dSc

dt
= Λ + ϱRc − βScIc − µSc

dIc
dt

= βScIc + ρDIc + α2SdIc − γIc − µIc − µ1Ic

dRc

dt
= γIc − ϱRc − δRc − µRc,

It is worthnoting that mathematical models for COVID-19, Diabetes and co-
morbidity have been developed, analyzed and several parameters used. Most
of mathematical models of underlying and comorbidity of COVID-19 and dia-
betes have been analysed under rate of transmission and the optimal controls
suggested and tested. This study focuses on the low rate of recovery and how
to lower the death rate caused by the underlying condition under vaccination.
This includes classes such as vaccination as many people are undergoing vacci-
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nation including diabetic people and the management of the comorbidity after
infection of COVID-19 on diabetic population.

3 Basic concepts

Some of basic concepts which are useful in this study are outlined. These
include Mathematical model, dynamical system, COVID-19, diabetes, co-
morbidity, ordinary differential equation, epidemiological model and basic re-
production number [29].

Definition 3.1 ([39], Definition 3.7) A deterministic model is an estab-
lished correlation between the input and output of a given structure. Such
correlations may or may not change over time. In this type of model, we for-
mulated deterministic model where product of the simulation is fully regulated
by the parameter rates and the initial state.

Definition 3.2 ([16], Definition 2.2) A stochastic model is correlations be-
tween input and output of a given structure where both the inputs and outputs
are arbitrary.

Definition 3.3 ([20], Definition 3.3) Sets of equations conveying the level
of variation in terms of the variables and time are known as dynamical systems.
Examples of dynamical systems are:
(i). Non-autonomous-x′ = G(t, y), where G : Rn+1 → Rn.
(ii). Discrete dynamical system- x[m + 1] = Gm(x[m]), where Gm : Rn →
Rn ∀m ∈ F ,
(iii). Autonomous discrete dynamical system-y[m+ 1] = G(y[m])

Definition 3.4 ([19], Definition 5.3) Diabetes is a metabolism malfunction
condition that make blood to have a lot of sugar in the human body.

Definition 3.5 ([22], Definition 4.4) Co-morbidity is the presence of more
than one disease in the same person. For example; diabetes and hypertension,
diabetes and kidney failure or diabetes and COVID-19, malaria and pneumonia
among others.

Definition 3.6 ([23], Definition 2.3) The parameter R0 is the number of
times infected individual infect other people in their entire infectious life.

4 Research methodology

These are some of the methods, inequalities,theories,programming and criteria
that will be used in the model formation and the analysis of the model formu-
lated. Deterministic differential equation will be used on model formation.
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4.1 The Kermack-MC kendrick model

This is one of the comparative models using time as independent variable (t)
and mathematic expression for the rate of transfer between the compartments
as derivatives with respect to time. This mathematical expression give differ-
ential equations which form a model. Example of compartments are suscepti-
ble (those can be infected), infection (those who have the disease), recovery/
removed ( those who recover from disease),vaccination(those have been vac-
cinated), exposed(those among the infected people) among others. From the
compartments we can come up with models such as SIR, SEIR , and SEIVR
among others.

4.2 Gronwall’s inequality

Gronwall s inequality is a deterministic analytical statement that converts an
inequality involving a function and its integral into an explicit, computable
bound. It is applicable when a nonnegative function is constrained by an ad-
ditive constant plus the integral of a nonnegative coefficient times the function
itself [14]. The inequality yields an exponential-type upper bound that controls
the function s growth in terms of the given coefficient and initial constant.

4.3 Routh-Hurwitz stability criterion

The Routh Hurwitz stability criterion is an algebraic method for determining
whether all roots of a polynomial lie strictly within the complex C. This
criterion provides a systematic procedure to test stability without explicitly
computing the roots of a polynomial.

4.4 Lyapunov technique (LT)

The LT is used to investigate stability properties of equilibrium points of dy-
namical systems without requiring explicit solutions of equations that govern
the dynamical system. In LT we construct an auxiliary scalar function, called
a Lyapunov function (LF), whose behavior along system trajectories provides
information about stability.

4.5 The next generation matrix (G)

This is a matrix denoted as G and used in determining the transmission terms
represented as M compartments because of recovery, death and any other
factors to other compartments [34]. From next generation matrix (GM−1),
we construct R0 [33].
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4.6 Jacobian Matrix, Determinant and Traces

Evaluating Jacobian Matrix [37] to come up with characteristic equations
which give eigenvalues. The negative eigenvalues will make R0 < 1 making
local stability of DFE stable, if eigenvalues are positive then R0 > 1 hence
unstable. From the jacobian matrix, we can solve determinant and trace then
applying Routh-Hurwitz condition. If Routh-Hurwitz condition holds then
there is stability of DFE. Consider

y =


g1(X)
g2(X)
.
.

gn(X)

 . (1)

The determinant for the above jacobian matrix is called a Jacobian [40].

4.7 Normalized forward sensitivity index

This indicate how other parameters indicated in the study affect the R0. These
parameters include death, rate of recovery, transmission rate among others.
Using set of assumptions, sensitivity analysis can be constructed to show how
parameters affect dependent variables such basic reproductive number in the
model. There two type of sensitivity analysis that is local and global. In local
sensitivity analysis one parameter is observed while others are put constant
some time refer as one-factor-at-a-time (OAT). In this work we are using global
sensitivity analysis as it was used in [41] which is calculated using normalized
forward sensitivity index. Using example of [42] as SR0

K = dR0

dK
× K

R0
where K

is the parameter being observed over basic reproduction number.

4.8 Numerical simulation technique

Numerical simulations can be done using Python which has jupyter note book
programming language or any other programming language in studies of this
nature [43]. After imputing differential equations, parameters and their values,
initial values and plotting. The command run give graphs for co-morbidity
under vaccination on recovery of patients. The graphs will be used to compare
the rate of recovery for the two models in our next paper [25]. The numerical
simulations is left for the next paper after this current one.
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5 Main results

5.1 Model formulation for COVID-19 Diabetes Comor-
bidity under vaccination

The total population size NH has Infected individuals (symptomatic) but di-
abetic population (ICD(t)), Vaccinated individuals (VD(t)), Recovered indi-
viduals diabetic population (RD(t)). Modification parameters χ1 and χ2 are
accounting for the relative rate of recovery for those with the two diseases as
compared to those who are diabetes free. Other parameters remain the same
as in Diabetes free model. The following are some of the assumptions of the
model:

(i). Vaccinated individuals are free from COVID-19 diabetic population and
free diabetic population.

(ii). Individuals recovered from COVID-19 diabetic population.

(iii). Illness can cause death for diabetic population or free diabetic population

(iv). Re-infection occur after recovered for diabetic population for COVID-19

(v). Vaccination can be done after recovery for those who were infected before
vaccination and susceptible for diabetic population or diabetic free.

We first consider compartment SH for susceptible individuals diabetic popula-
tion and free diabetic population. In this class, population is increased by those
who are diabetic and those who are not diabetic at the assumed a constant
recruitment ρH . The reduction is done by those who are infected by diabetes
and vaccinated. These reduced Susceptible class while death µ due tnatural
cause reduces susceptible individuals whether they are diabetic or not.

dSH

dt
= ρH − λDSH − µSH . (2)

Considering compartment, DH , of susceptible individuals of diabetic popula-
tion. Individuals who are having diabetes are the one in this class. Recruitment
is done from susceptible class at the rate of λD which increases the number of
individuals. Some of individuals are infected by COVID-19 as asymptomatic or
symptomatic cause movement into two classes asymptomatic LCD and symp-
tomatic ICD class and rates of λ2 and λ2 respectively reducing the number of
individuals. In this class vaccination is done at rate θD reducing number to
vaccinated class VD. Both natural death and diabetes induced death occur at
this class reducing the number of individuals at the rate µ and δd respectively.

dDH

dt
= λDSH − (λ1 + λ2 + θ + µ+ θD)SH (3)
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Compartment VD (vaccinated individuals).
In this class individuals are vaccinated against COVID-19 to reduce the rate
of infection and re-infection, this can boost stability of the immunity system.
From this study, we assumed those who are vaccinated are free from COVID-19
infection. Those who are vaccinated are increasing the number of individuals.
From SH class at the rate of θ, DH class to VD at the rate of θD and RD

class those who were infected before vaccination, recovered and now being
vaccinated at the rate of κ. Individuals can be vaccinated but still die and
when death occurs, the number of individuals decreases.

dVD
dt

= κRD + θSH + θDDH − µVD (4)

During COVID-19 infection, individuals get infected with disease but have
no signs and symptoms and they are infectious. Individuals get into this
class from diabetic class DH and recovery class if there is re-infection. and
this increases the number of individuals. On the other hand, when there is
recovery the number of asymptomatic individuals reduce. If asymptomatic
persons developed signs and symptoms then they move to infected class ICD

at rate of τ . Both natural death, death due diseases or two diseases can occur
at the rate of µ, δ or δCD respectively.Modifying factor for recovery is χ1 help
in comparing rate of recovery for asymptomatic and symptomatic.

dLCD

dt
= λ1SH + ψ1RD − (µ+ δ + τ + χ1γ1)LCD (5)

Now LCD consists of those who are infected and showing both sign and symp-
toms known are as symptomatic individuals. Individuals in this class have
COVID-19 and Diabetes. The recruitment is done in this class from dia-
betic class DD, asymptomatic class LCD and recovery class RD if there is
re-infection. The rate at which movement from these classes are done: λ2,
ψ2 and τ respectively and increase the number of individuals. When people
recover from this class, they move to recovery class RD at γ2. Natural attri-
tion, death caused by two diseases or COVID-19 alone can reduce the number
of individuals significantly. The rate of recovery for asymptomatic is not the
same as for symptomatic hence we have modifying factor χ2. Therefore, we
have

dICD

dt
= λ2SH + ψ2R + τL− (µ+ δ + δCD + χ2γ2)ICD (6)

For RD, people recover from COVID-19 infection but still remain diabetic,
they come from asymptomatic class LCD and symptomatic ICD. The rr differ
from one class to another hence modifying factors χ1 and χ2 respectively. For
those who recovered need to be vaccinated, if they were not vaccinated before
infection,this done at rate of κ to vaccination class VD. Re-infection can occur
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Table 6: Parameters and interpretations of model with diabetic population
Parameter Interpretations

SH Susceptible population
DH Diabetic individuals
LCD Carriers individuals (infected and infectious but asymptomatic)

with diabetes
ICD Infected individuals (symptomatic)
RD Recovered individuals
VD Vaccinated individuals
ρH Rate of recruitment to the susceptible individuals
λ1 Rate of recruitment to the carrier individuals
λ2 Rate of recruitment to the infected individuals
λD Rate of recruitment to the diabetic individuals
θ Rate of recruitment from susceptible to the vaccinated individuals
θD Rate of recruitment from diabetes to the vaccinated individuals
κD Rate of recruitment from recovered to the vaccinated individuals
µ Natural death rate
γ1CD Rate of recovery for carrier individuals
γ2CD Rate of recovery for infected individuals
τ Rate of transfer of carrier individuals to the infected class
β Effective contact rate for COVID-19 transmission
δ Death rate due to corona virus
β1 Rate of disease transmission directly from humans
χ1 Modification parameter carrier to recovery with both diseases
χ2 Modification parameter infected to recovery with both diseases
α Modification parameter for infected on transmission

after recovery cause some individuals to be re-infected asymptomatically (LCD)
or symptomatically (ICD) at the rate of ψ1 or ψ2 respectively.

dRD

dt
= χ1γ2ICD + χ2γ1LCD − (µ+ ψ2 + ψ1 + κ)RD (7)

The main model in this study is:

dSH

dt
= ρH − λDSH − µSH (8)

dDH

dt
= λDSH − (λ1 + λ2 + θ + µ+ θD)SH (9)

dLCD

dt
= λ1SH + ψ1RD − (µ+ δ + τ + χ1γ1)LCD (10)

dVD
dt

= κRD + θSH + θDDH − µVD (11)
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dICD

dt
= λ2SH + ψ2R + τL− (µ+ δ + χ2γ2)ICD (12)

dRD

dt
= χ1γ2ICD + χ2γ1LCD − (µ+ ψ2 + ψ1 + κ)RD. (13)

At this juncture we do analysis of COVID-19 and Diabetes comorbidity.

5.2 Positivity of solution

Proposition 5.1 From the Model 8 Let the initial conditions be be denoted
as (SH ,DH ,LCD,VD,ICD and RD)(0) > 0. There is complete positivity for the
solution set SH ,DH ,LCD,VD,ICD and RD(t).

Proof. Taking Model 8, we have

dSH

dt
= ρH − (λd + µ)SH (14)

dDH

dt
= λSH − (λ1 + λ2 + θd + µ+ δd)DH (15)

dLcd

dt
= λ1DH + ψ1Rd − (µ+ δ + τ + χ1γ1 + δdc)Lcd (16)

dVD
dt

= κRd + θDH − (µ+ δd)Vd (17)

dIcd
dt

= λ2DH + ψ2Rd + τLcd − (µ+ δ + χ2γ2 + δdc)Icd (18)

dRD

dt
= χ2γ2Icd + χ1γ1Lcd − (µ+ ψ2 + ψ1 + κ+ δd)Rd (19)

Now consider the first equation in the model above SH

dt
= ρH − (λd + µ)SH

then we have
dSH

dt
= ρH − (λd + µ)SH (20)

dSH

dt
≥ (λd + µ)SH (21)

Separating the variables yields

dSH

SH

≥ (λd + µ)dt (22)

Integrating the differential inequality yields

lnS1(| s0s) ≥ (λd + µ)t1(| tt0) (23)

and applying the initial conditions t = 0,SH = S0 on

St ≥ S0e
(λd+µ) ≥ 0 (24)

since λD + µ ≥ 0. Applying same procedure to the remaining variables will
indicate all are positive for all t > 0.
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5.3 Boundedness of solution

We sum up the right hand side of four equations of the compartmentalized
model 8 gives N = SH +DH + Lcd + Vd + Icd +Rd, we have

dN

dt
=
dSH

dt
+
dVd
dt

+
dIcd
dt

+
dLcd

dt
+
dRd

dt
, (25)

and substitution of corresponding value from model 8 and working out gives

dN

dt
= Λ−δd(DH+Vd+Rd)−δdc(Lcd+Icd)−(SH+DH+Lcd+Vd+Icd+Rd)µ.

(26)
Thus,

dN

dt
= Λ− µ(SH +DH + Lcd + Vd + Icd +Rd) (27)

and so
dN

dt
= Λ− µN. (28)

Therefore we obtain
dN

dt
≤ Λ− µN, (29)

Hence, we have
dN

dt
+ µN ≤ Λ. (30)

Applying integrating factor and separation of variables and solving for 30 we
get

N(t) ≤ Λ

µ
+N(0)e−µt (31)

From Inequality 31, it can be clearly seen that

0 ≤ N(t) ≤ Λ

µ
+N(0)e−µt, (32)

where N(0) is the initial population. Thus, as t→ ∞, we have

0 ≤ N(t) ≤ Λ

µ
(33)

This indicates that the model 8 is well-posed mathematically and epidemio-
logically and it is sufficient to consider its solution. It is uniformly bounded
and represent human population which is non negative for all time t ≥ 0.
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5.4 Disease Free Equilibrium (DEF)

We consider the DEF denoted by E0(S0
H , D

0
H , L

0
cd, V

0
d , I

0
cd). Using model 8 re-

duced as without Rd, we have

dSH

dt
= ρH − (λd + µ)SH

dDH

dt
= λSH − (λ1 + λ2 + θd + µ+ δd)DH

dLcd

dt
= λ1DH + ψ1Rd − (µ+ δ + τ + χ1γ1 + δdc)Lcd

dVd
dt

= κRd + θDH − (µ+ δd)Vd

dIcd
dt

= λ2DH + ψ2Rd + τLcd − (µ+ δ + χ2γ2 + δdc)Icd.

Consider

S0
H =

ρH
(λd + µ)

. (34)

Considering the compartmentalized System 8, we obtain from the second equa-
tion

D0
H =

λSH

(θd + µ+ δd)
(35)

and substituting Equation 34 into Equation 35 we obtain

D0
H =

λρH
(λd + µ)(θd + µ+ δd)

, (36)

Using the forth equation of the compartmentalized system 8, we get

V 0
d =

θDH

(µ+ δd)
. (37)

Substituting Equation 36 and Equation 37 and solving for V 0
d , we get

V 0
d =

θλρH
(λd + µ)(θd + µ+ δd)(µ+ δd)

. (38)

Using Equation 34, Equation 36 and Equation 38, the DFE E0, of model 8 is

E0(S0
H , D

0
H , L

0
cd, V

0
d , I

0
cd) =

ρH
(λd + µ)

,
λρH
A

,
θλρH
B

, 0, 0, 0, (39)

where A = (λd + µ)(θd + µ+ δd) and B = (λd + µ)(θd + µ+ δd)(µ+ δd).
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5.4.1 The Basic Reproduction Number

We consider a population with those having diabetes but are being affected
with COVID-19. From the model infection classes are Icd and Lcd. The infec-
tious subsystem is reduced to:

dLcd

dt
= λ1DH + ψ1Rd − (µ+ δ + τ + χ1γ1 + δdc)Lcd;

dIcd
dt

= λ2DH + ψ2Rd + τLcd − (µ+ δ + χ2γ2 + δdc)Icd.

The infection rate matrix F can be constructed as; new infection is divided into
two where a fraction of those who are causing new infection at L class diabetic
population and those who are causing new infection diabetic population at I
class at 1− n and n respectively. Force of infection: λ = βL

L
N
+ βI

I
N

and new
infections; (1− n)λDH into L class and (n)λDH into I so we have

F =

(
(1− n)λDH

nλDH

)
(40)

Substituting λ into Equation 40 we have

F =

(
(1− n)(βL

L
N
+ βI

I
N
)DH

n(βL
L
N
+ βI

I
N
)DH

)
. (41)

The Jacobian of F becomes

F =
DH

N

(
(1− n)(βL (1− n)(βI
n(βL n(βI

)
(42)

and the Jacobian matrix is deduced as

JL,I =

(
(µ+ δ + τ + χ1γ1 + δdc) 0

−τ (µ+ δ + χ2γ2 + δdc)

)
. (43)

Hence,

V =

(
(µ+ δ + τ + χ1γ1 + δdc) 0

−τ (µ+ δ + χ2γ2 + δdc)

)
(44)

and to calculate the inverse of V , we get the determinant of V as

detV = [−(µ+ δ + τ + χ1γ1 + δdc)][−(µ+ δ + χ2γ2 + δdc)]

= (µ+ δ + τ + χ1γ1 + δdc)(µ+ δ + χ2γ2 + δdc)

So,

V −1 =

( 1
(µ+δ+τ+χ1γ1+δdc)

0
τ

((µ+δ+τ+χ1γ1+δdc)(µ+δ+χ2γ2+δdc))
1

(µ+δ+χ2γ2+δdc)

)
. (45)
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Therefore,

FV −1 =
DH

N

 A (1−n)βI

(µ+δ+γ2)
nβL

(µ+δ+τ+γ1)
+ nβI

τ
(µ+δ+τ+γ1)(µ+δ+γ2)

nβI

(µ+δ+χ2γ2+δdc)

 , (46)

where A = (1−n)βL

(µ+δ+τ+χ1γ1+δdc)
+ (1− n)(βI

τ
((µ+δ+τ+χ1γ1+δdc)(µ+δ+χ2γ2+δdc))

).

The two eigenvalues represent asymptomatic class population Lcd and symp-
tomatic infected class Icd diabetic population hence we have two R0, Lcd and
R0, Icd. We add the two and get the total basic reproduction number R0 =
R0, L+R0, I.

So, DH

N
[

(1−n)βLcd

(µ+δ+τ+χ1γ1+δdc)
+ (1− n)βIcd

τ
((µ+δ+τ+χ1γ1+δdc)(µ+δ+χ2γ2+δdc))

]− η,
and

DH

N
[

nβIcd
(µ+ δ + χ2γ2 + δdc)

]− η.

Hence,

R0, Lcd =
DH

N
[

(1− n)βLcd

(µ+ δ + τ + χ1γ1 + δdc)

+ (1− n)(βIcd
τ

[(µ+ δ + τ + χ1γ1 + δdc)(µ+ δ + χ2γ2 + δdc)]
,

R0, Icd =
DH

N

nβIcd

(µ+δ+χ2γ2+δdc)
and adding the two gives,

R0 =
DH

N
[

(1−n)βLcd

(µ+δ+τ+χ1γ1+δdc)
+(1−n)(βIcd τ

[(µ+δ+τ+χ1γ1+δdc)(µ+δ+χ2γ2+δdc)
+

nβIcd

(µ+δ+χ2γ2+δdc)
]

Rearranging R0 we obtain

R0 =
DH

N
[

(1−n)βLcd

(µ+δ+τ+χ1γ1+δdc)
+

βIcd

(µ+δ+χ2γ2+δdc)
( (1−n)τ
(µ+δ+τ+χ1γ1+δdc)

+ n)]

Now, at DFE where D0
H = λρH

(λd+µ)(θd+µ+δd)
and N = Λ

µ
we substitute D0

H and

N into R0 to get R0 =
µ

(θ+µ)
[ (1−n)βL

(µ+δ+τ+γ1)
+ βI

(µ+δ+γ2)
(n+ (1−n)τ

(µ+δ+τ+γ1)
)].

From R0 we can conclude that:

(i).
(1−n)βLcd

(µ+δ+τ+χ1γ1+δdc)
infections caused by only those who are in Lcd class.

(ii).
βIcd

(µ+δ+χ2γ2+δdc)
( (1−n)τ
(µ+δ+τ+χ1γ1+δdc)

+ n) infections caused by those who went

straight to Icd class n
βIcd

(µ+δ+χ2γ2+δdc)
and those who enter through Lcd

showed signs and symptoms then moved to I βI

(µ+δ+χ2γ2+δdc)
( (1−n)τ
(µ+δ+τ+χ1γ1+δdc)

).

(iii). When τ = 0, we have R0 =
µ

(θ+µ)
[

(1−n)βLcd

(µ+δ+χ1γ1+δdc))
+

βIcd

(µ+δ+χ2γ2+δdc)
n].
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5.5 The Local Stability of DFE for Diabetic Population

We now analyze the local stability of DFE for diabetic population. We state
the result below.

Theorem 5.2 The DFE for diabetic population of Model 8 is locally asymp-
totically stable.

Proof. The DFE for diabetic population of Model 8 can be studied by evalu-
ating its Jacobian matrix given as:

J0
E =



X 0 0 0 0 0
λ −Y 0 0 0 0
0 λ1 −Z 0 0 ψ1

0 θ 0 −P 0 κ
0 λ2 τ 0 −Q ψ2

0 0 χ1γ1 0 χ2γ2 −R


, (47)

where X = −(λd+µ), Y = (λ1+λ2+θd+µ+δd), Z = (µ+δ+τ +χ1γ1+δdc),
P = (µ + δd), Q = (µ + δ + χ2γ2 + δdc) and R = (µ + ψ2 + ψ1 + κ + δd). The
characteristic equation is [−((λd+µ)][(λ1+λ2+ θd+µ+ δd)][−(µ+ δd)][−(µ+
δ + τ + χ1γ1 + δdc)][−(µ+ δ + χ2γ2 + δdc)][−(µ+ ψ2 + ψ1 + κ+ δd)] = 0.
Therefore, λ = −(µ + δ + χ2γ2 + δdc),−(λd + µ)and − (µ + δd) making R0

negative. This will reduce matrix J0
E to

J0
E =

 −G 0 0
λ1 −H ψ1

0 χ1γ1 −L

 , (48)

where G = (λ1 + λ2 + θd + µ + δd), H = (µ + δ + τ + χ1γ1 + δdc) and L =
(µ + ψ2 + ψ1 + κ + δd). The negative trace of the Matrix 47 is −[(λ1 + λ2 +
θd +µ+ δd) + (µ+ δ+ τ +χ1γ1 + δdc) + (µ+ψ2 +ψ1 + κ+ δd)], and det(J0

E) is
(λ1+λ2+θd+µ+δd)[(ψ1χ1γ1)−((µ+δ+τ+χ1γ1+δdc)(µ+ψ2+ψ1+κ+δd))] which
is positive provided (ψ1χ1γ1) > ((µ+ δ+ τ +χ1γ1+ δdc)(µ+ψ2+ψ1+κ+ δd)).
Routh-Hurwitz condition holds hence DFE for diabetic population is LAS.

5.6 The Global Stability of DFE for Diabetic popula-
tion

We do the analysis of DFE for diabetic population of Model 8 to establish
if it is GAS. From model 8, w have X=(SH , DH , Vd) and Z=(Lcd,Icd, Rd),
therefore we obtain

H(X, 0) =

(
ρH − (θ + µ)SH

θSH − µV

)
(49)
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which is equivalent to

H(X, 0) =

 −C 0 0
λ1 −D ψ1

0 χ1γ1 −E

 , (50)

where C = (λ1 + λ2 + θd + µ + δd), D = (µ + δ + τ + χ1γ1 + δdc) and E =
(µ+ψ2+ψ1+κ+δd). Equation 71 has a unique equilibrium point atX = ( ρH

(λd+µ)
,

λρH
(λd+µ)(θd+µ+δd)

, θλρH
(λd+µ)(θd+µ+δd)(µ+δd)

which is GAS. Now, we get

P =

 K 0 ψ1

τ J ψ2

χ1γ1 χ2γ2 −O

 , (51)

where K = β
N
DH−(µ+δ+τ+χ1γ1+δdc), J = β

N
DH−(µ+δ+χ2γ2+δdc) and

O = (µ+ ψ2 + ψ1 + κ+ δd). From matrix P , we do an evaluation and obtain

PZ =
β

N
DHL− (µ+ δ + τ + χ1γ1 + δdc)L

+ ψ1RτL+
β

N
DHI − (µ+ δ + χ2γ2 + δdc)I

+ ψ2Rχ1γ1L+ χ2γ2I − (µ+ ψ2 + ψ1 + κ+ δd)R.

and

GZ =
β

N
DHL− (µ+ δ + τ + χ1γ1 + δdc)L

+ ψ1RτL+
β

N
DHI − (µ+ δ + χ2γ2 + δdc)I

+ ψ2Rχ1γ1L+ χ2γ2I − (µ+ ψ2 + ψ1 + κ+ δd)R.

So,

ĜZ = PZ −GZ = 0. (52)

ĜZ = [0]T . Therefore, ĜZ = 0 and hence E0 is GAS.

5.7 The Endemic Equilibrium (EE)

We denote EE by E∗(S∗
H , D

∗
H , V

∗
d , L

∗
cd, I

∗
cd, R

∗
d) and we carry out the analysis

as given by the next result.

Theorem 5.3 The Endemic equilibrium E∗(S∗
H , D

∗
H , V

∗
d , L

∗
cd, I

∗
cd, R

∗
d) exists

provided that R0 > 1.
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Proof. Using model 8 and equating each equation to zero we have

dS∗
H

dt
= ρH − (λd + µ)S∗

H

dD∗
H

dt
= λS∗

H − (λ1 + λ2 + θd + µ+ δd)D
∗
H

dL∗
cd

dt
= λ1D

∗
H + ψ1R

∗
d − (µ+ δ + τ + χ1γ1 + δdc)L

∗
cd

dV ∗
D

dt
= κR∗

d + θD∗
H − (µ+ δd)V

∗
d

dI∗cd
dt

= λ2D
∗
H + ψ2R

∗
d + τL∗

cd − (µ+ δ + χ2γ2 + δdc)I
∗
cd

dR∗
D

dt
= χ2γ2I

∗
cd + χ1γ1L

∗
cd − (µ+ ψ2 + ψ1 + κ+ δd)R

∗
d

So,

S∗
H =

ρH
(λd + µ)

. (53)

From the the second equation we have

D∗
H =

λS∗
H

(λ1 + λ2 + θd + µ+ δd)
. (54)

Substituting Equation 53 into equation 54, we obtain

D∗
H =

λρH
(λd + µ)(λ1 + λ2 + θd + µ+ δd)

. (55)

Considering the third equation

L∗
cd =

λ2D
∗
H + ψ2R

∗
d

(µ+ δ + τ + χ1γ1 + δdc)
, (56)

and substituting Equation 55 into Equation 56 we get

L∗
cd =

λρHλ1
(µ+ δ + τ + χ1γ1 + δdc)(λd + µ)(λ1 + λ2 + θd + µ+ δd)

+
ψ1R

∗
d

(µ+ δ + τ + χ1γ1 + δdc)
,

(57)

and from the fifth equation we get

I∗cd =
λ2D

∗
H + τL∗

cd + ψ2R
∗
d

(µ+ δ + χ2γ2 + δdc)
. (58)

Now, substituting equation 55 into equation 58, we get

I∗cd =
λ2λρH

(λd + µ)(λ1 + λ2 + θd + µ+ δd)(µ+ δ + χ2γ2 + δdc)
+

τL∗
cd + ψ2R

∗
d

(µ+ δ + χ2γ2 + δdc)
. (59)
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From the last equation we have

R∗
d =

γ2I
∗
cd + χ1γ1L

∗
cd

(µ+ ψ2 + ψ1 + κ+ δd)
, (60)

Now, substituting R0 into equation 58, we have

I∗cd =
R0ρH

(λd + µ)(λ1 + λ2 + θd + µ+ δd)(µ+ δ + χ2)
+

(τL∗
cd + ψ2R

∗
d)λ2

R0
. (61)

Let x = µ+ δ + τ + χ1γ1 + δdc,
x1 = λ1 + λ2 + θd + µ+ δd
x2 = λd + µ
x3 = µ+ δ + τ + χ1γ1 + δdc
x4 = µ+ ψ2 + ψ1 + κ+ δd
x5 = µ+ δ + χ2.

Then we have

L∗
cd =

λρHλ1
xx2x1

+
ψ1R

∗
d

x3
, (62)

R∗
d =

γ2Icd + χ1γ1Lcd

x4
, (63)

I∗cd =
R0ρH
x2x1x5

+
(τLcd + ψ2R

∗
d)λ2

R0
, (64)

Substituting Equation 63 into equation 62, we obtain

L∗
cd =

λρHλ1x3x4
(xx1x2)(x3x4 − ψ1χ1γ1)

+
ψ1γ2Icd

(x3x4 − ψ1χ1γ1)
. (65)

Again substituting Equation 63 into Equation 64

I∗cd =
R0ρH
x2x1x5

+
ψ2λ2Icd
R0x4

+
τx4λ2 +R0ψ2λ2Lcd

R0x4
. (66)

Let N = x3x4 − ψ1χ1γ1
N1 = xx1x2
N2 = x2x1x5
N3 = x3x4.
Substituting Equation 65 into Equation 66 and working out gives

I∗cd = R2
0ρHx4N − (

N1Nx4 − λρHλ1ψ2λ2N3

N1
)R0 + (λ2Nx4 + ψ2λ2ψ1γ2 +Nψ2λ2). (67)

Equating Equation 67 to zero gives,

R2
0ρHx4N − (

N1Nx4 − λρHλ1ψ2λ2N3

N1
)R0+(λ2Nx4+ψ2λ2ψ1γ2+Nψ2λ2− I∗cd) = 0. (68)

We conclude by saying there is only one possible sign change at ( +,-,+).
When R0 is positive then S∗

H , D
∗
H , V

∗
d , L

∗
cd, I

∗
cd, R

∗
d are also positive.
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5.8 The Local Stability of EE for Diabetic population

The Jacobian at the endemic equilibrium of system 8 below

dS∗
H

dt
= ρH − (λd + µ)S∗

H

dD∗
H

dt
= λS∗

H − (λ1 + λ2 + θd + µ+ δd)D
∗
H

dL∗
cd

dt
= λ1D

∗
H + ψ1R

∗
d − (µ+ δ + τ + χ1γ1 + δdc)L

∗
cd

dV ∗
D

dt
= κR∗

d + θD∗
H − (µ+ δd)V

∗
d

dI∗cd
dt

= λ2D
∗
H + ψ2R

∗
d + τL∗

cd − (µ+ δ + χ2γ2 + δdc)I
∗
cd

dR∗
D

dt
= χ2γ2I

∗
cd + χ1γ1L

∗
cd − (µ+ ψ2 + ψ1 + κ+ δd)R

∗
d,

is given by

J(E∗) =



−Γ 0 0 0 0 0
λ −∆ 0 0 0 0
0 λ1 −Θ 0 0 ψ1

0 θ 0 −Ξ 0 κ
0 λ2 τ γ2 −Π ψ2

0 0 χ1γ1 0 χ2γ2 −Σ


, (69)

where Γ = (λd + µ), ∆ = (λ1 + λ2 + θd + µ+ δd), Θ = (µ+ δ+ τ +χ1γ1 + δdc),
Ξ = (µ+ δd), Π = (µ+ δ + χ2γ2 + δdc) and Σ = (µ+ ψ2 + ψ1 + κ+ δd).
From matrix 69, there is one eigenvalue −(µ+ δd). The other eigenvalues can
be deduced from the reduced matrix define as

J(E∗) =


−Υ 0 0 0 0
λ −Φ 0 0 0
0 λ1 −Ψ 0 ψ1

0 λ2 τ −Ω ψ2

0 0 χ1γ1 χ2γ2 −ϖ

 , (70)

where Υ = (λd + µ), Φ = (λ1 + λ2 + θd + µ+ δd), Ψ = (µ+ δ+ τ +χ1γ1 + δdc),
Ω = (µ+ δ + χ2γ2 + δdc) and ϖ = (µ+ ψ2 + ψ1 + κ+ δd).
Let, M = (λd + µ)

M1 = (λd + µ)

M2 = (µ+ δ + τ + χ1γ1 + δdc)

M3 = (µ+ δ + χ2γ2 + δdc)

M4 = (µ+ ψ2 + ψ1 + κ+ δd)
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Then,

J(E∗) =


−M 0 0 0 0
λ −M1 0 0 0
0 λ1 −M2 0 ψ1

0 λ2 τ −M3 ψ2

0 0 χ1γ1 χ2γ2 −M4

 (71)

5.9 The Global Stability of EE for Diabetic population

We use Lyapunov’s direct method and LaSalle’s principle to establish the
global stability of equilibria.

Theorem 5.4 If R0 > 1 then the EE for diabetic population given and
denoted by E∗(S∗

H , D
∗
H , V

∗
d , L

∗
cd, I

∗
cd, R

∗
d)) is GAS strictly inside Ω.

Proof. Consider a non-linear LF Ve on (SH ,DH , Vd, Lcd, Icd,Rd):∈ Ω ⊂ ℜ6
+:

whereby (SH ,DH ,Vd, Lcd, Icd,Rd) > 0. Then we have that

Pe : (SH , DH , Vd, Lcd, Icd, Rd) =
1

2
(
SH

S∗
H

− 1)2 +
1

2
(
DH

D∗
H

− 1)2 +
1

2
(
VD
V ∗
D

− 1)2

+
1

2
(
Lcd

L∗
cd

− 1)2 +
1

2
(
Icd
I∗cd

− 1)2 +
1

2
(
Rd

R∗
d

− 1)2.

So, Pe is strictly inside Ω. Therefore, Pe has attained its minimum at E∗

globally on Ω and Pe:(SH ,DH ,Vd, Lcd, Icd,Rd) = 0. Moreover,

dPe

dt
=

1

S∗
H

(
SH

S∗
H

− 1)
dSH

dt
+

1

D∗
H

(
DH

D∗
H

− 1)
dDH

dt
+

1

L∗
cd

(
Lcd

L∗
cd

− 1)
dLcd

dt

+
1

V ∗
d

(
Vd
V ∗
d

− 1)
dVd
dt

+
1

I∗cd
(
Icd
I∗cd

− 1)
dIcd
dt

+
1

R∗
d

(
Rd

R∗
d

− 1)
dRd

dt
.

The derivatives of (SH ,DH , Vd, Lcd, Icd,Rd) from 8 are converted and after
some manipulation shows stability. Hence, V ′

e < 0. V ′
e = 0 if and only if

SH = S∗
H , Lcd = L∗

cd , Icd = I∗cd , Vd = V ∗
d , DH = D∗

H and Rd = R∗
d. Thus, E

∗

is GAS in the interior of the region Ω.

5.10 Sensitivity Analysis

Parameter sensitivity shows how some parameters within the system, have
higher or lower degree of influencing model’s stability We consider the variables
below as given in the model.

R0 =
λµβαρH

(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)
dR0

dα
= λµβρH

(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)
dR0

dλ
= µβαρH

(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)
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Table 7: Parameters values, source and description for stability
Parameter Interpretations

ρH RRTS individuals
θ RRFS to the vaccinated individuals DP
θD RRFD to the vaccinated individuals
κD RRFR to the vaccinated individuals DP
γ1CD Rate of recovery for carrier individuals DP
γ2CD Rate of recovery for infected individuals but DP
τCD Rate of transfer of carrier individuals to the infected class DP
β Effective contact rate for COVID-19 transmission DP
µ Natural death rate diabetic population
δ Death rate due to corona virus but with diabetes
α Modification parameter for infected on transmission
χ1 Modification parameter carrier to recovery with both diseases
χ2 Modification parameter infected to recovery with both diseases
ψ1CD Rate of reinfections for carrier individuals but with diabetes
ψ2CD Rate of reinfections for infected individuals but with diabetes

dR0

dρH
= µβαλ

(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)

dR0

dβ
= ρHµαλ

(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)

dR0

dθd
= − βρHµαλ

θd(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)

dR0

dγ2
= − βρHµαλ

γ2(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)

dR0

dχ2
= − βρHµαλ

χ2(µ+δ+χ2γ2+δdc)(λd+µ)(θd+µ+δd)

therefore S
R0=

dR0
dP

P × P
R0

SR0
α = 1, SR0

λ = 1, SR0
ρH

= 1, SR0
β = 1, SR0

θd
= − 1

θd
, SR0

χ2
= − 1

χ2
, SR0

χ1
= − 1

χ1
,

SR0
γ2

= − 1
γ2
, SR0

γ1
= − 1

γ1
.

Parameters such as β, α, θd and ρH which have positive index increase the
R0. These parameters should be controlled if not managed by reducing their
effect in order to reduce R0. Those parameters with negative index such as
γ2,γ1, χ2, andχ1 reduce R0. An increase in these parameter will reduce R0 and
COVID-19 will be managed. By reduction of R0, COVID-19 will be controlled
and managed on diabetic population and less people will have severe illness,
less deaths and less admission in ICU or hospital. Rate of recovery and rate
of vaccination play a vital role when its come to control of COVID-19 hence
more people should be vaccinated. This will boost the rate of recovery hence
more people will recover faster. The analytical results in this work can be
done using Python under jupyter notebook to conduct numerical simulations
for model 8 using parameter given in the table below. The higher the rate
of recovery, the more individuals get recovered. As rate of recovery reduces,
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less people get recovered. As more people get recovered and vaccinated, less
individuals get reinfected as diabetic population take control measurers and
administer their medicine proper. As more people get vaccinated, few become
asymptomatic and symptomatic and the attack is not persisting. This make
more people to recover hence less asymptomatic and symptomatic population.
The effect of varying gamma is low generally compare to other populations.
As gamma increases, more individuals become vaccinated and if gamma is
low then few will be vaccinated. In a lower or higher gamma, the vaccinated
population continues to increase as more people get vaccinated and few are
infected. General observation is that the rate of recovery is slow when there
is co-morbidity. We conclude that recovery rate is low on individuals with
COVID-19 disease under diabetic population but high on individuals with only
COVID-19 under free diabetic population. This make the death rate, number
of individuals admitted in the hospital to be higher on those with COVID-19
and Diabetes compared to those with COVID-19 only.

6 Open Problems

Certain natural problems emanate from this research. The following prob-
lems and questions can be considered for future research and further analy-
sis. Problem 1: Can one carry out a numerical analysis of the comorbidity?
Problem 2: There is need for bifurcation analysis of the model for robustness.
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