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Abstract

The achromatic number of a graph is the largest number
of colors that can be assigned to each vertex of the graph such
that adjacent vertices are assigned different colors and any two
different colors are assigned to some pair of adjacent vertices.
In this paper, we find exact values of the achromatic numbers
of n-complete starfish graphs, and bounds of the achromatic
numbers of SF(n,1) graphs when n is a natural number and
n > 3.
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1 Introduction

The study of graph theory originated with the publication of Euler, L. entitled
”Solutio problematis and geometriamsitus pertinentis” or known as ” The seven
bridges of Konigsberg problem” in 1736. Later in the year 1852, Guthrie, F.
made a conjecture entitled ”The four-color problem”. This problem has been
studied extensively, leading to the creation of basic concepts and definitions on
graph theory. So it can be said that the starting point for the study of graph
theory was this four-color problem. The definition of a complete n-coloring of
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a graph was first introduced by Harary, F. et al. [8] in 1967. Three years later,
Harary, F. and Hedetniemi, S. [7] were able to find the achromatic number
of the join of two graphs. They obtained that the achromatic number of the
join of two graphs is the sum of their achromatic numbers. In 1998, Cairnie,
N. and Edwards, K. [2] determined the achromatic number of bounded degree
trees. In the next three years, MacGillivray, G. and Rodriguez, A. [9] were able
to find the achromatic number of the union of paths. Furthermore, in 2013
Edwards, K. [5] gave simple necessary and sufficient conditions for a graph of
maximum degree 2 to have a complete coloring with k colors, provided the
graph is large enough, and use this to give the achromatic number for such a
graph. In 2018, Aparna, K. M. et al. [1] determined the achromatic numbers
of some special graphs such as Central graph of the Tadpole graph, Central
graph of a Spider graph and Central graph of a Double Triangular Snake graph.
Next year, Nithyadevi, N. and Vijayalakshmi, D. [10] obtained the achromatic
numbers for Central graph of Ladder graph, Central graph of Dutch-Windmill
graph, Central graph of Fan graph and Central graph of Flower graph.
Graph coloring has many practical applications like computer science, telecom-

munications, operation research, designs of experiments, etc. Since then, many
mathematicians and graph theorists have studied on the achromatic numbers
of some graphs. So, this is the reason that why we are interesting to find
the achromatic numbers of some simple graphs, including n-complete starfish
graphs, and SF(n, 1) graphs when n is a natural number and n > 3.

2 Preliminaries

In this section, we recall some definitions and some results follow the book
entitled ”Introduction to Graph Theory” of Chartrand, G. and Zhang, P. [4]
that will be used throughout this paper. Since our work is the study on finite
simple labeled undirected graphs, that means our graphs have no loops and
multiple edges, the definition of graphs is defined as the following.

A (simple, labeled, undireted) graph G consists of a finite nonempty set
V(Q) of elements called vertices and a set F(G) of 2-element subsets of V(G)
called edges. If e = {u,v} (for simply uv) is an edge of G, then w and v are
called adjacent vertices. We also say v and v are joined by the edge e. The
vertices u and v are referred to as neighbors of each other. In this case the
vertex u and the edge e (as well as v and e) are said to be incident with each
other. If distinct edges incident with a common vertex, then the edges are
also called adjacent edges. A vertex of a graph is said to be pendant if it has
only one neighbor. An edge of a graph is also said to be pendant if one of its
vertices is a pendant vertex. The number of vertices and the number of edges
in GG is often called the order and the size of GG, respectively. A graph with
exactly one vertex is called a trivial graph, implying that a graph with order at
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least 2 is called a nontrivial graph. The number of edges incident on a vertex
v in a graph G is called the degree of the vertex v and denoted by deg(v). The
vertex of degree 1 in a graph G is called an end vertex of the graph G.

Next, we recall some graphs which will be referred to throughout this paper.

If the vertices of a graph G of order n, where n > 3, can be labeled as
V1, V2, ..., Us, SO that its edges are viv9, vovs, ..., v,_1v, and v,v;, then G is
called a cycle of order n and denoted by C,,. So the size of C,, is n.

A graph G is complete if every two distinct vertices of G are adjacent. A

complete graph of order n is denoted by K, and so the size of K, is (Z)

3 Main results

First of all, we would like to recall the definitions of a coloring and a complete
coloring of a graph.

A (proper) coloring of a graph G is an assignment of colors (elements of
some set) to the vertices of G, one color to each vertex, such that adjacent
vertices are colored differently. Here, we use natural numbers to represent n
different colors and will say that a surjective map f : V(G) — {1,2,...,n}
is an n-coloring function of a graph G if f(u) # f(v) for every u,v € V(G)
and wv € E(G). And if there exists an n-coloring function of a graph G, we
say that G has an n-coloring.

A complete n-coloring of a graph G is an n-coloring of G such that for every
pair of colors there is at least one edge in G whose end vertices are colored with
this pair of colors. As a consequence, if a graph G has a complete n-coloring
then the size of the graph G must be at least (;) So, if the size of a graph G
is less that (’;) for some natural number n, then G does not have a complete
n-coloring.

Most of mathematicians familiar with the chromatic number of a graph.
The chromatic number of a graph is defined as the smallest number n such that
the graph has an n-coloring. The chromatic number of a graph G is denoted
by x(G). But for the achromatic number of a graph, it is defined differently.
The achromatic number of a graph is defined as the largest number n in which
the graph has a complete n-coloring. The achromatic number of a graph G
is denoted by (G). It follows that ¥(G) > x(G) for every graph G and if
G is a graph of order n then ¥(G) < n. Moreover, we can easily see that

X(Kn) = n = (Ky).
3.1 Achromatic numbers of n-complete starfish graphs

Definition 1. Let n be any natural number such that n > 3. An n-complete
starfish graph, denoted by K, ® Ky, is a graph constructed by joining every
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vertex of a complete graph K, to a corresponding pendant vertex with a pendant
edge.

The following figure shows the 5-complete starfish graph.

U
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Figure 1: The 5-complete starfish graph K5 © K;

By Definition 1, we have that the order and the size of an n-complete
starfish graph K, ® K; are 2n and (Z) +n= @, respectively.
To get the achromatic numbers of n-complete starfish graphs when n is a

natural number and n > 3, we need the following lemmas.

Lemma 1. Let n be any natural number such that n > 3. The n-complete
starfish graph K,, ® K; has a complete (n + 1)-coloring.

Proof. Since ¥(K,) = n, K, has a complete n-coloring. Let f : V(K,) —
{1,2,3,...,n} by f(u;) =i where u; € V(K,) for every i =1,2,3,...,n be a
complete n-coloring of K,,. Since the graph K,, ® K is constructed by joining
every vertex of a complete graph K, to a corresponding pendant vertex with
a pendant edge, every pendant vertex is adjacent to a corresponding vertex of
K, and all pendant vertices are not adjacent to each other. Suppose that v; is a
corresponding pendant vertex which is adjacent to u; forevery i =1,2,3,...,n.
We define g : V(K, © K;) — {1,2,3,...,n+ 1} by g(u;) = f(u;) and
g(v;)) = n+1 for every ¢ = 1,2,3,...,n. It is obvious that g is a complete
(n + 1)-coloring function. Hence, the n-complete starfish graph K, ® K; has
a complete (n + 1)-coloring. O

Lemma 2. Let n be any natural number such that n > 3. The n-complete
starfish graph K, ® K does not have a complete (n + 2)-coloring.

Proof. Since the size of K, ® K is ”("+1) and ””+1 < (”+2)(n+1) _ ( J2r )’
the n-complete starfish graph K, ® K1 does not have a complete (n + 2)-
coloring. O

A consequence of Lemma 1 and Lemma 2 is the following theorem

Theorem 1. Letn be any natural number such thatn > 3. Then (K,0K;) =
n+1.
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3.2 Bounds of achromatic numbers of SF'(n,1) graphs

Definition 2. Let n be a natural number in whichn > 3. A SF(n,1) graph is a
graph constructed by joining every vertex of a cycle graph C,, to a corresponding
pendant vertex with a pendant edge.

The following figure shows the SF'(4,1) graph.

Uy Uy
U1 Uy

U (%
Us 2 3 Us

Figure 2: The SF(4,1) graph

By Definition 2, we have that the order and the size of a SF(n,1) graph
are equal, i.e. equal to 2n.

In 2009, Fuller, S. [6] was able to find the achromatic number of the cycle
graphs C@) for any odd number n > 3 and the achromatic number of the cycle

graphs C'(g) o for any even number n > 4 as the following theorem.

Theorem 2. Let n be any odd number such that n > 3. Then w(C( )) =n.

n
2

Theorem 3. Let n be any even number such thatn > 4. Then w(C'(n ) =n.

3)+3
Later in 2018, Chainurak, P. [3] was able to find the achromatic number of
cycle graphs as the following lemma.

=n—1.

Lemma 3. Let n be any odd number such thatn >5. Then w(C( )+1)

Lemma 4. Let n be any odd number such thatn > 3 and m € {2,3,4,...,n—
1}. Then w(C(g)er) =n.

Lemma 5. Let n be any even number such that n > 4 and m € {0,1,2,...,
5 —1}. Then w(C( )+m) =n—1

2
Lemma 6. Let n be any even number such that n > 4 and m € {1,2,...,
% —1}. Then w(C( )

Drgem) =1

Furthermore, we also need some results of natural numbers which can be
proved by the proof of Mathematical Induction, as the following lemmas.

Lemma 7. Let n be any natural number such that n > 2. Then % > 2n.
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Proof. Consider case n = 2, we have 18(28)_3 = 3 > 4 =2(2). Assume that

for any natural number £ > 2, 18k_3 > 2k. Consider 18(k-gl)—3 = 18k=3 188 >

2k+2 = 2(k+1). By the proof of mathematlcal induction, we have §8” 2> 2n
for every natural number n > 2. O]

By using the same method of proof as in Lemma 7, we obtain the following
lemma.

Lemma 8. Let n be any natural number such that n > 4. Then w >
2(n+1).

Lemma 9. Let n be any natural number such that n > 3. Then % >
2n + 1.

Lemma 10. Letn be any natural number such thatn > 5. Then w >

n(n —1).

Lemma 11. Let n be any natural number such thatn > 7. Then w >

n(n—1)+ 2.

Lemma 12. Let n be any natural number such that n > 1. Then n + S
2(n+1).

Lemma 13. Let n be any natural number such thatn > 7 andm € {2,3,4, ...,

n—1}. ThenMS(gn_l) >n(n —1)+2m.

Proof. Let m = max{2,3,4,...,n —1}. Consider case n = 7, we have
3(7)+1)(3(7) —1
(B(7) + g( D =Y _ 55 50— 7(6) + 2(6).
Assume that for any natural number k > 7, w >k(k—1)+2(k—1).
Consider (3(1@—1—1)—&-1)‘53(1@4—1)—1) _ ((3k+1)+3)8((3k—1)+3) _ (3k+1)8(3k—1) n 9(21;+1)‘ By

the assumption of induction and Lemma 8, we conclude that

Bk+1)+1)B(k+1)—1)
8

k(k—1)+2(k—1)+2(k+1)
(k+2)(k—1)4+2(k+1)
(E+2)+1)((k—1)+1)
= (k+1)+2)((k+1)-1)
k+1)(k+1)—(k+1)+2k+1)—2
(k+D((k+1)—1)+2((k+1) - 1).

By the proof of mathematical induction, we have EHUG=L ~ 4y 1)+2m

for every natural number n > 7 and m € {2,3,4,...,n — 1}. O
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By using the same method of proof as in Lemma 13, we obtain the following
lemma.

Lemma 14. Let n be any natural number such thatn > 4 andm € {0,1,2, ...,
5 —1}. Then W >n(n—1)+2m.

Lemma 15. Let n be any natural number such thatn > 4 andm € {1,2,3,...,5—
1}. Then W > n? 4 2m.

Theorem 4. ([11]) Let x be any real number and n be any integer. Then
lz+n] =|x] +n.

Up to now, none has been able to find the achromatic numbers of SF(n, 1)
graphs for any natural number n such that n > 4. We use these previous theo-
rems and lemmas as the tool to determine bounds of the achromatic numbers
of the graphs.

To determine bounds of achromatic numbers of SF(n,1) graphs for any
natural number n such that n > 4, we consider six cases:

1. Bounds of ¢(SF((}),1)) for any odd number n such that n > 5.

2. Bounds of :(SF((}) 4+ 1,1)) for any odd number n such that n > 7.

3. Bounds of ¥(SF((}) +m, 1)) for any odd number n such that n > 7 and

m€{2,3,4,...,n—1}.

4. Bounds of :(SF((}) + %,1)) for any even number n such that n > 4.

5. Bounds of (SF((}) + m,1)) for any even number n such that n > 4

and m € {0,1,2,...,% —1}.

6. Bounds of )(SF((}) + % +m, 1)) for any even number n such that n > 4
and m € {1,2,3,...,5 — 1}.

Lemma 16. Let n be any odd number such that n > 3. Then the graph
SF((3),1) has a complete (n + 1)-coloring.

Proof. By Theorem 2, @D(C( )) = n. So there is a complete n-coloring, say

2
f: V(C’(n>) — {1,2,3,...,n}. Since the graph SF((g), 1) is constructed by
2
joining every vertex of the cycle graph C(n) to a corresponding pendant vertex
2
with a corresponding pendant edge, every pendant vertex is adjacent to a

corresponding vertex of C(n) and all pendant vertices are not adjacent to each

other. Suppose that v; is aQCorresponding pendant vertex which is adjacent to
u; € V(C(n)) for every i = 1,2,3,..., (") We define g : V(SF((Z),l)) —
2

2
{1,2,3,...,n+ 1} by g(w;)) = f(u;) and g(v;) = n + 1 for every w;,v; €
V(SF((3),1))andi=1,2,3,..., (}). It is obvious that g is a complete (n+1)-
coloring. Hence the graph SF((}),1) has a complete (n + 1)-coloring. O
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Lemma 17. Let n be any odd number such that n > 5. Then the graph
SF((3),1) does not have a complete (n + %)-colom’ng.

. n—i-@ 3(3n—1)(n—1)
Proof. Consider |E(SF((3),1))] =2(5) =n(n—1) and ("",» ) = ===

@ 2 8

Then by Lemma 10, \E(SF((Z), )| < (”+2n ) Therefore, the graph SF((;L), 1)

n

does not have a complete (n + ~2*)-coloring. O
A consequence of Lemma 16 and Lemma 17 is the following theorem.

Theorem 5. Let n be any odd number such that n > 5. Then

n+1§w(5F((Z>,1))§n+@—1.

n

Lemma 18. Let n be any odd number such that n > 3. Then the graph
SF(( ) +1,1) has a complete n-coloring.

Proof. By Lemma 3, QZJ(C(n)_H) = n—1. So there is a complete (n—1)-coloring,
2
say f : V(C(n)ﬂ) — {1,2,3,...,n — 1}. Since the graph SF(( ) +1,1) is
constructed by joining every vertex of the cycle graph C(n) 41 to a correspond-
2

ing pendant vertex with a corresponding pendant edge, every pendant vertex

is adjacent to a corresponding vertex of C’< )41 and all pendant vertices are

not adjacent to each other. Suppose that v; is a corresponding pendant vertex
which is adjacent to u; € V(C(n)+1) for every i =1,2,3,..., (g) +1. We define
2

g:V(SF((5) +1,1)) — {1,2,3,...,n} by g(u;) = f(uz) and g(v;) = n for

every u;, v; € V(SF((") +1,1)) and i = 1,2, 3,. ) + 1. It is obvious that
g is a complete n-coloring. Hence the graph SF + 1,1) has a complete
n-coloring. O

Lemma 19. Let n be any odd number such that n > 7. Then the graph
SF((3) +1,1) does not have a complete (n + L( 2)+1 |)-coloring.

Proof. Consider L(Q)HJ = L”("g—i)ﬁj = |21 + 1| such that %1 is an integer.

By Theorem 4, [E1) — 250 4 1) — 250, Hence (+1,7)) = ("17) =

(Lgl) - B(Bn—l)(n . By Lemma 11, ("H(;QL J) > n(n — 1) + 2. Since
[E(SF((5) +1 )| = 2((;) + 1) = n(n— 1) +2, [ESF((3) +1,1)] <

n

)

J). Therefore, the graph SF((}) + 1,1))) does not have a complete
5)+1

(n+ L(TJ )-coloring. O
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A consequence of Lemma 18 and Lemma 19 is the following theorem.

Theorem 6. Let n be any odd number such that n > 7. Then

() +1

ngw(SF((g)H,m)gnﬂ |-1.
Lemma 20. Let n be any odd number such that n >3 and m € {2,3,4,...,
n —1}. Then the graph SF(() + m,1) has a complete (n + 1)-coloring.

Proof. By Lemma 4, w(C(n)+m) = n. So there is a complete n-coloring, say f :
2

V(C<n)+m) — {1,2,3,...,n}. Since the graph SF((}) +m,1) is constructed
2

by joining every vertex of the cycle graph C(n) +m 0 a corresponding pendant
2

vertex with a corresponding pendant edge, every pendant vertex is adjacent
to a corresponding vertex of C’(n) +m and all pendant vertices are not adjacent
2

to each other. Suppose that v; is a corresponding pendant vertex which is
adjacent to u; € V(C(n)+m) for every i = 1,2,3,...,(3) + m. We define

2

g: V(SF((")+m 1)) —{1,2,3,...,n+1} by g(u;) = f(u;) and g(v;) = n+1
for every u;,v; € V(SF((}) +m, 1)) and i =1,2,3,...,(3) + m. It is obvious
that g is a complete (n + 1)-coloring. Hence the graph SF((3) +m,1) has a
complete (n + 1)-coloring. O

Lemma 21. Let n be any odd number such that n > 7 and m € {2,3,4,...,

n—1}. Then the graph SF((})+m, 1) does not have a complete (n+ L—(g);mj +
1)-coloring.

Proof. Let m = max{2 3,4,...,n — 1}. Consider L(@:mj = |ninDi2m ) _
[ 251 + 2| such that 1 is an integer. By Theorem 4, [( 2+ )= 2] =

. Hence ("H( )5 JH) = ("+?+1) = (%) = %. By Lemma 13,

(nﬂ( i) J“) > n(n — 1) + 2m. Since |E(SF((3) +m,1)))| =2((5) + m) =

n

(3)+m
n(n — 1) 4+ 2m, we have |[E(SF((3) +m,1)))| < (”J”L " J). Therefore, the
graph SF((})+m, 1))) does not have a complete (n-+ L(n):mj +1)-coloring. [

A consequence of Lemma 20 and Lemma 21 is the following theorem.

Theorem 7. Let n be any odd number such that n > 7 and m € {2,3,4,...,

n—1}. Then n+1 < ¢(SF((}) +m, 1)))<n+L<)iJ

Lemma 22. Let n be any even number such that n > 4. Then the graph
SF((5) + 2,1) has a complete (n + 1)-coloring.
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Proof. By Theorem 3, Q/J(C’(n)Jrﬂ) = n. So there is a complete n-coloring, say
2 2
f: V(C(n)Jrﬂ) — {1,2,3,...,n}. Since the graph SF((}) + %,1) is con-
structed by joining every vertex of the cycle graph C’(n) .n» to a corresponding
2 2

pendant vertex with a corresponding pendant edge, every pendant vertex is
adjacent to a corresponding vertex of C( ) o and all pendant vertices are

not adjacent to each other. Suppose that v; is a corresponding pendant vertex
which is adjacent to u; € V(C(n)Jrﬂ) foreveryi =1,2,3,... (") +%. We define
2 2

g: V(SF((Z) +5,1)) — {1,2,3,...,n+1} by g(u;) = f(u;) and g(v;) = n+1
for every w;,v; € V(SF((3) +2,1)) and i = 1,2,3,...,(}) + 2. It is obvious
that ¢ is a complete (n 4 1)-coloring. Hence the graph SF ((Z) ,1) has a
complete (n + 1)-coloring. O

Lemma 23. Let n be any even number such that n > 4. Then the graph

n

SF((5) + 2,1) does not have a complete (n + (3)% + 1)-coloring.

Proof. Consider |E(SF((3) +2,1))| = 2((}) + 2) = n? and (n+(2n+1) =

2

(2n2+1) = 2n? 4+ n. Since n? < 2n? + n for every natural number n,
(3)+%

|[E(SF((5) +2,1)] < (" 22 H) Therefore, the graph SF((5) 4+ 2,1) does

not have a complete (n + ~2.-2 + 1)-coloring. O

A consequence of Lemma 22 and Lemma 23 is the following theorem.

Theorem 8. Let n be any even number such that n > 4. Then

n+1 S@ZJ(SF((Z) +E,1))) <n+ (Z)+§‘

2 n

Lemma 24. Let n be any even number such that n > 4 and m € {0,1,2,...,
2 —1}. Then the graph SF(( ) +m, 1) has a complete n-coloring.

Proof. By Lemma 5, (C (§)+m) = n—1. So there is a complete (n—1)-coloring,
say f : V(C(g)+m) — {1,2,3,...,n — 1}. Since the graph SF((}) + m,1)
is constructed by joining every vertex of the cycle graph C’(g) 4 B0 & corre-
sponding pendant vertex with a corresponding pendant edge, every pendant
vertex is adjacent to a corresponding vertex of C(g) i and all pendant vertices
are not adjacent to each other. Suppose that v; is a corresponding pendant
vertex which is adjacent to u; € V(C’<g>+ ) for every i = 1,2,3,..., ( ) + m.

We define g : V(SF((3) + m,1)) — {1,2,3,...,n} by g(u;) = f(u;) and
g(v;) = n for every u;,v; € V(SF((3) +m,1)) and i = 1,2,3,...,(3) + m. It
is obvious that ¢ is a complete n-coloring. Hence the graph SF (g) +m,1)
has a complete n-coloring. D
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Lemma 25. Let n be any even number such that n > 4 and m € {0,1,2,...,
2—1}. Then the graph SF((})+m,1) does not have a complete (n+ L@%J +

1)-coloring.

Proof. Let m = max{0,1,2,...,5 — 1}. Consider L(Z)#J = |2t L4 +2 =
|22 + 5 4+ 2| = [ 252 + 222 such that 22 is an integer. By Theorem 4,
(;)er n—2 n+2m n—2 n+|_(721)+mj+1 n+252 41 3n

22— ] =22+ [P52] = 252 Hence ("1 = (") = (3) =
W Then by Lemma 14, M >n(n—1)+2m.

Since |E(SF((5) +m, 1)) =2((} ) +m) = 2("( Y m) =n(n—1)+2m, we
have |[E(SF((3) +m,1)| < (n+ L(Q) | +1). Therefore, the graph SF((}) +
m, 1)) does not have a complete (n + L(H)#J + 1)-coloring. O

A consequence of Lemma 24 and Lemma 25 is the following theorem.

Theorem 9. Let n be any even number such that n > 4 and m € {0,1,2,...,
2 —1}. Thenn < (SF((3) +m,1)) <n+ L@#J.

Lemma 26. Let n be an even number such that n > 4 and m € {1,2,3, ...,
% —1}. Then the graph SF((3) + % 4+ m,1) has a complete (n + 1)-coloring.

Proof. By Lemma 6, @/J(C’(n>+ +m) = . So there is a complete n-coloring, say
2 2

f:v( ()42 wom) — {1,2,3,...,n}. Since the graph SF((3) + % +m,1) is

constructed by joining every vertex of the cycle graph C'( )42 4m to a corre-

sponding pendant vertex with a corresponding pendant edge every pendant

vertex is adjacent to a corresponding vertex of C< )42 4m and all pendant ver-

tices are not adjacent to each other. Suppose that v; is a corresponding pendant
vertex which is adjacent to u; € V(C(Z)Jr%m) for every 1 = 1,2,3, ..., (g) +
2 4+ m. We define g : V(SF((5) + 2 +m,1)) — {1,2,3,...,n+ 1} by
g(u;) = f(u;) and g(v;) = n + 1 for every u;,v; € V(SF((}) + 2 —I— m, 1)) and
1=1,2,3,..., (2) + 4§ +m. It is obvious that g is a complete (n + 1)-coloring.
Hence the graph SF((}) + % +m, 1) has a complete (n + 1)-coloring. O

Lemma 27. Let n be any even number such that n > 4 and m € {1,2,3, ...,
% —1}. Then the graph SF((3) + % 4+ m,1) does not have a complete

(n + L()Jr—erJ + 1)-coloring.

2

Proof. Let m = max{1,2,3,...,5 — 1}. Consider L( )43 +mj = L%erj =

n

|5 + 7] where § is an integer. By Theorem 4, LMJ =5+ |7 =3

Hence ("H()ZJH) = (”*g“) = (%) = WLM. Then by Lemma 15,
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(3)+4+m n
(U = () = @260 Ginee |B(SF((D) 4+ 2+ m,1))| =

2
2((5) + % +m) = n® + m, we have

() +5+m

|+1).

|E(SF((Z> + g +m, 1) < (n+|

Therefore, the graph SF((3) + % + m,1))) does not have a complete (n +
LMJ + 1)-coloring. ]

n

A consequence of Lemma 26 and Lemma 27 is the following theorem.

Theorem 10. Let n be any even number such thatn > 4 and m € {1,2,3, ...,

1) Thenn+ 1< o(SF((7) + 2 +m, 1)) <n+ |EFE)

4 Conclusion and Open Problem

In this paper, we found the exact value of the achromatic number of a com-
plete starfish graph n and the bounds of the achromatic number of the graph
SF(n,1) when n is a natural number and n > 3. For the next study, we can
extend our results by further research to find sharper bounds of the achromatic
number of the graph SF(n,1).
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