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Abstract

Characterization of Symmetrized Two-Sided Multiplica-
tion Operators have been done over years in-terms of their
properties which include numerical ranges and norms among
others. However, characterizing the spectrum and norms have
not been exhausted still remains interesting. There exists an
open question requiring the determination of the norms of el-
ementary operators in a general Banach space setting. Since
there is a strong relation ship between the norm and spec-
tral radius, it is in the interest of this study to characterize
spectral properties of Symmetrized Two-Sided Multiplication
Operators as an avenue that can help in solving the general
problem.
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1 Introduction

Several studies on characterization of symmetrized two-sided multiplication
Operators (STSMO) and elementary operators (EO) in general have been done
over years in-terms of their properties which include numerical ranges [2] and
norms [5], spectrum (Sp), spectral radius (Sr) among others. However, char-
acterizing the spectrum and norms have not been exhausted and still remains
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interesting [4]. Many authors ([1], [7] and the references therein) considered
elementary operators acting on Hilbert-Schmidt class C2(H) and conditions
for operators to be 2-symmetric and 3-symmetric [6] have been established. In
the investigations it was established that if MT,S is an elementary operator and
M2

T,S = −M2
T,S∗ then the operator MT,S is 2-symmetric if there exists a scalar

β whereby T 2 + T ∗2 = 2βT ∗T and SS∗ = β(S2 + S∗2) whereby 1
2
≤| β |≤ 1.

The work of [3] further characterized the 3-symmetric elementary operators
and established that for two sided multiplication operators acting on C2(H)
with T, S ∈ B(H) whereby {T 3, T ∗2T} and {S3, S∗2S} are commutants, STSMO
are linear independent [8]. The research was further extended by [9] to binomial
operators and it was established that for any two sided multiplication opera-
tor, MT,S, it is binomial if we have a scalar α such that TT ∗2T = αT ∗T 2T ∗

and also αSS2B∗ = αSS∗2S with | α |= 1.
In our research, it was interesting to establish the spectral properties of β
whereby T 2 + T ∗2 = 2βT ∗T and SS∗ = β(S2 + S∗2), further we also ex-
tended our investigation to the spectral properties of STSMOs. In [10] the
work researched on the norm equality and established sufficient conditions for
the equality to hold for uniformly convex spaces. Additionally, an equivalance
relationship was established. In our research we investigated various spectra
properties of the symmetric norm ideals in B(X). We extended our in the
norms to other technical approaches and established the link between various
spectra properties.
The work of [12] considered lower bound for completely bounded norms of
MT,S. In the investigation, it was established that ∥ MT,S ∥kl≥∥ T ∥∥ S ∥.
Furthermore, using tensor products, and given that injective norm is the min-
imal tensor cross norm then, for T, S ∈ B(H) and if MT,S = T ⊗S +S⊗ T , it
follows that ∥ MT,S ∥β≥ 2(

√
2−1) ∥ T ∥∥ S ∥ as seen in [13]. Further research

established that for operators of rank 1, MT,S does not attain its norm [14].
Moreover, link between between spatial numerical range and numerical radius
was also established in the research. The research was further extended by [15]
to real mappings defined by RT,S(x) = T ∗xS +S∗x∗T. Examples were utilized
to establish the relationship MT,S(x) = TxS + SxT = exe+ uxu holds.
Of interest in our research was to investigate various spectral properties of vari-
ous inequalities such as ∥ MT,S ∥kl≥∥ T ∥∥ S ∥ that were satisfied in the norms.
We extended and spectral properties of MT,S(x) = TxS + SxT = exe + uxu
and other operators established. For [16], their investigation established that
equality holds for spectral norms and the investigation was extended in cones
and it was proved that if operators admit the two-sided multiplication prop-
erty, then they are normal and norm attainable.
In [17] the authors characterized positive operators particularly self adjoint op-
erators. In the research, conditions for a polynomial’s eigenvalue of a real poly-
nomial to have negative real part were established. Furthermore, the research
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established that if an operator is positive then its eigenvalues are non-negative
and extended to polynomials and it was established that characteristic poly-
nomial of such self adjoint operators is real. In other words the polynomial
has real coefficients. A link between self adjoint operators and orthogonality
was also established in [20]. In the investigation it was established that T is
self adjoint if there exist orthogonal isometries and a sequence of real values
which are normal as supported by [19].
The study of [18] also considered the relationship between identity operators
and orthogonal isometric operators. In the investigation, it was established
that if I is an identity operator and if β is faithful, then IPj = Pij = 1, 2, ..., n
and the reduction is irreducible. In operator spaces, it was established in [21]
that for normal cones C and C

′
, they coincide if they are positive and β is in

the spectrum of S. The investigation was further extended to resolvents which
are real positivity was established.
Additionally, it was proved that the leading coefficient in the principal part of
the resolvent at ω = β is a positive operator. Moreover, it was proved in [26]
that if C is properly contained in the cone C

′
then there exists one character-

istic vector s for β in C. The research was extended to power STSMO and it
was established that for the the interior point of C, the point spectrum is a
singleton set containing β.
The authors of [25] researched on positive operators that can be presented in
the form S(X) = Σξ

j=iαjXβj where αj and βj are square matrices. In the
research it was proved that if ξ(S) is a block matrix in Mj(Mj(C)), then the
operator S : (Mj(C)) → (Mj(C)) is i-positive if Ij ⊗ P )ξ(S)(Ij ⊗ P ) is pos-
itive for all rank i. The investigation was extended to operators of the form
Sy =

∑ξ
j=1 µjαjyα

∗
j . Again, it also proved that S is i-positive under certain

conditions. Moreover, it was shown that if S has length of at most (k2 − 1)
and S is (K − 1) positive, then S is completely positive.
The authors of [43] researched on positive operators and more particularly
compactly strong operators. They heavily utilized the upper and lower spec-
tral radius in there work. In the research they proved that lower spectral
radius also serves as the upper spectral radius. They also established the rela-
tionship between positive operators, irreducible ideal and the spectral radius,
quasi-interior C
Recent studies also did the comparison between ideal irreducible operators
semi-strong positivity of operators [27]. In the investigation, it was established
that ideal irreducibility implies semi-strongly positivity ifX is a Banach lattice.
To sum up the introduction, we realized that little has been given attention
with regard to spectra of STSMO. This forms the basis of this research.
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2 Literature review

We discuss literature on spectral analysis of symmetrized two sided multipli-
cation operators in this work. We consider various studies, their relevance and
critical contributions to this study.
The study of [28] considered complex operators that are symmetric. They ex-
plored a wide range of this class of operators including the Jordan canonical
model. They extensively explored the C-symmetric property where they es-
tablished that S is C-symmetric if if it is a commutant. They established that
the point spectra of S and S∗ corresponds and the same assertion also holds
for the approximate spectra of the two operators as supported by [29]. They
further established that if S is invertible then S also satisfies the C-symmetric
property. Further investigation also established that for bounded linear op-
erators if S is symmetric and an orthonormal basis exists to which S is also
symmetric. Another work in [30] further proved that if S = St is symmetric,
then for unitary operator U and a normal and symmetric N , S = UNU t. In
this case N was diagonalized to a real orthogonal isometry.

Theorem 2.1 ([31]) If M = MS∗S is the spectral measure of S∗S then
CSM(δ) = M(δ)CS for every Borel subset δ of [0,∞].

Another study by [31] considered the spectral measure of S∗S and established
that if M = MS∗S is the spectral measure of S∗S then CSM(δ) = M(δ)CS
for every Borel subset δ of [0,∞]. The research was extended to rank order
one operators and established that if S = x ⊗ y then CS = S∗C if S is a
constant multiple of x⊗Cy. The study extended to consider the compression
of Su to Hu. In the investigation it was established that (Hu, Su, C) admit
the C-symmetry property. The study also considered the relationship between
closed graph densely defined symmetric operators and the isometric involution
operators C and established that the symmetric property SC = CS also exist
between this two classes of operators, hence S can be parameterized by all
isometric operators Q such that Q∗C = CQ as elaboated in [32].

Theorem 2.2 For jointly C-symmetric operators Sβg = αβg, if g is or-
thogonal to the conjugate kernel Qβ and S∗

βg = g/αβ then g is orthogonal to
the reproducing kernel Kβ.

Some recent study of [22] considered antilinear involution and established that
if S is two sided then RU = U∗R. Additionally, for jointly C-symmetric oper-
ators Sβg = αβg, if g is orthogonal to the conjugate kernel Qβ and S∗

βg = g/αβ

then g is orthogonal to the reproducing kernel Kβ. They finally established the
link between invariant subspaces, reducing subspaces and orthogonal isome-
tries. In the research of [24] it was established that M is C-invariant if M⊥ is
C-invariant, and moreover, the compression T = PSP of S to M also admits
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CT = T ∗C property.
In another investigation, [23] investigated bounded linear operators inH. They
considered the operator S = CSC∗ and proved that S = CJ | S | . The study
of [35] emphasized this and proved that JU = U∗J where U and J are both
symmetric. The following result provide a methods that can be used to con-
struct symmetric operators.

Theorem 2.3 ([33]) For cones, all STSMO can construct symmetric oper-
ators.

Now [34] established that the product of orthogonal isomery with | S | is uni-
tary. The research further proved that S∗S and SS∗ are equivalent and they
admit the C-symmetric property. The investigation was extended to compact
operators and it was established that eigenvectors of | S | are the nonzero
eigenvalues of | S | . Further research proved that Sxm = δmCxm.
In our research it was interesting to establish that C-symmetric operators are
also two sided multiplication operators. As such we investigated the spectral
properties and established that the spectral measure that belongs to the Borel
subset. We extended the investigation to STSMO and also investigated the
spectral properties of such operators. We also considered the spectral prop-
erties of C-symmetric operator with its adjoint. We extended our research
to scaled C-symmetric operators given that scaled C-symmetric operators are
also C-symmetric operators.
The work of [36] researched on the spectra of different classes of operators inH.
In the research it was established that the spectrum of continuous operators
is in the operator norm as seen in the next theorem.

Theorem 2.4 ([33]) The spectrum of a continuous operator is in the oper-
ator norm.

The investigation was extended and it was established that the spectrum (Sp)
of such operators is also compact and also non empty. Additionally, it was es-
tablished that the Sp of is nonvoid in R. The work also considered l2 space and
it proved that two-sided shift operators has an empty spectrum. It is worth
to note that compact operators are not two sided multiplication operators but
they can be view as two sided multiplication operators if they are compact and
when they are multiplied by other operators from both sides.
Some authors [37] in researched on C-symmetric operators in H. The investi-
gation determined the Jordan ideal of SC coincides with their dual space. In
the research, it was established that C∗(S) ⊂ SC ;W

∗(S) ⊂ SC ; | S |∈ SC :
C∗S = J∗(S). It was further proved that if A ∈ SC , then ∥ JA ∥=∥ A ∥
and δ(JA) = δr(JA) = δl(JA) = δπ(JA) = 1

2
{δ(A) + δ(A)}. Again, it was

established that if T ∈ SC , then the following also hold, that is, δπ(T ) =
δδ(T ) = δ(T ); δ(JT ) ⊂ 1

2
{δ(T ) + δ(T )}, furthermore it was established in [38]
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that δπ(JA) = δδ(JA,1). Using the dual relationship, it was established that if
δπ(JA,0) = δδ(JA,1) and δδ(JA,0) = δπ(JA,1).
In our research we also considered the ideal of STSMO. We also established
various links between various types of spectra. As a result we represented
compact operators by multiplying it with a function then proceeded to inves-
tigate the spectral properties of the resultant operator. Furthermore, it is also
well established that finite rank compact operators are two sided. Therefore,
we investigated the spectrum to determine if it consists of eigenvalues plus the
zero. We extended our investigation to shift operators and established that the
spectrum of shift operators is the closed unit disk in the C plane as illustrated
in [39].
For [40], they considered elementary operators acting on Hilbert-Schmidt class
C2H. The worked on conditions for operators to be 2-symmetric and 3-
symmetric. In the investigation, it was established that if MT,S is an elemen-
tary operator and M2

T,S = −M2
T,S∗ , then the operator MT,S is 2-symmetric if

there exists a scalar β : T 2+T ∗2 = 2βT ∗T and SS∗ = β(S2+S∗2) : 1
2
≤| β |≤ 1.

Again, [41] characterized the 3-symmetric elementary operators and estab-
lished that for two sided multiplication operators acting on C2H with T, S ∈
B(H) : {T 3, T ∗2T} and {S3, S∗2S} being linear independent then MT,S is 3-
symmetric if there exist constants α and β.

Theorem 2.5 We have for cones,

(i). 3T ∗3T = αT ∗3 − βT 3, S3 = αS2S∗ + βSS∗2

(ii). T ∗3 = αT 3, T ∗A2 = βT ∗2T, S3 = αS∗3, SS∗2 = βS2S∗ and | α |=| β |= 1

The research was further extended by [42] to binomial operators and it was
established that for any two sided multiplication operator, MT,S is binomial if
we have a scalar α such that TT ∗2T = αT ∗T 2T ∗ and also αSS2B∗ = αSS∗2S
with | α |= 1.
In our research it was interesting to establish the spectral properties of β
whereby T 2 + T ∗2 = 2βT ∗T and SS∗ = β(S2 + S∗2), further we also extended
our investigation to the spectral properties of operators that satisfies the fol-
lowing condition provided that MT,S is a STSMO.

Theorem 2.6 We have for symmetric cones,

(i). 3T ∗3T = αT ∗3 − βT 3, S3 = αS2S∗ + βSS∗2

(ii). T ∗3 = αT 3, T ∗A2 = βT ∗2T, S3 = αS∗3, SS∗2 = βS2S∗ and | α |=| β |= 1

We finally closed our research by considering the spectral properties of two
sided multiplication binomial operators. In our research we considered both
spectrum, approximation spectrum, spectral radius any other spectral proper-
ties for operators under review as suggested by [43]. We also investigated the
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spectral properties of the norms of the following equation that are 3T ∗3T =
αT ∗3 − βT 3, S3 = αS2S∗ + βSS∗2, T 3 = 3αT ∗T 2 + βT ∗2T, S2S∗ = αS3 + βS∗3

and | α |=| β |, T ∗3 = αT 3, T ∗A2 = βT ∗2T, S3 = αS∗3, SS∗2 = βS2S∗ and
| α |=| β |= 1.
The work of [3] concentrated on the norm equality and established sufficient
conditions for the equality to hold. In our research we investigated vari-
ous spectra properties of the symmetric norm ideals in B(X). We extended
our in the norms to other technical approaches and established the link be-
tween various spectra properties. Also [7] researched on lower bound for com-
pletely bounded norms of MT,S. In the investigation, it was established that
∥ MT,S ∥kl≥∥ T ∥∥ S ∥.
Further using tensor product, and given that injective norm is the minimal
tensor cross norm then if T, S ∈ B(H) and if MT,S = T ⊗S+S⊗T , it follows
from [11] that ∥ MT,S ∥β≥ 2(

√
2− 1) ∥ T ∥∥ S ∥. Further research established

that for operators of rank 1, MT,S does not attain its norm. A link between
between spatial numerical range and numerical radius was also established in
the research. The research was further extended to real mappings. Examples
were utilized to establish the relationship MT,S(x) = TxS + SxT = exe+ uxu
holds [20].
Of interest in our research was to investigate various spectral properties of vari-
ous inequalities such as ∥ MT,S,K ∥≥∥ T ∥∥ S ∥ that were satisfied in the norms.
We extended this work and spectral properties of MT,S(x) = TxS + SxT =
exe + uxu and other operators have been established [24]. We also investi-
gated the spectral properties of operators that admit the following conditions:
∥ MT,S,K | B(H) ∥=∥ T ∥∥ S ∥ and ∥ MT,S | B(H) ∥=∥ M∗

T ∗,S∗ | B(H) ∥ for
self adjoint operators.
In [23], they characterized positive operators particularly self adjoint opera-
tors. In the research, conditions for an a polynomial’s eigenvalue of a real
polynomial to have negative real part were established.

Theorem 2.7 ([24]) We have that

(i). STSMO have symmetric bases

(ii). STSMO can be symmetrized under norm

Further more the research established that eigenvalues are non-negative for
STSMO and it was extended to polynomials and it was established that char-
acteristic polynomial of such self adjoint operators is real. In other words the
polynomial has real coefficients. A link between self adjoint operators and
orthogonality was also established.
Recently, [27] also considered the relationship between identity operators and
orthogonal isometric operators. In the investigation, it was established that if
I is an identity operator and if β is faithful, then IPj = Pij = 1, 2, ..., n and
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the reduction is irreducible.
Additionally, it was proved in [3] that the leading coefficient in the principal
part of the resolvent at ω = β is a positive operator. So, it was proved that
if C is properly contained in the cone then there exists one characteristic vec-
tor s for β in C. The research was extended to power operators and it was
established in [42] that for the the interior point of C, the point spectrum is a
singleton set containing β.

Theorem 2.8 ([36]) The point spectrum of STSMO is a singleton set.

Another work of [38] researched on positive operators that can be presented
in the form S(X) = Σξ

j=iαjXβj where αj and βj are square matrices. In
the research it was proved that if ξ(S) is a block matrix in Mj(Mj(C)), then
the operator S : (Mj(C)) → (Mj(C)) is i-positive if Ij ⊗ P )ξ(S)(Ij ⊗ P ) is
positive for all rank i. The investigation was extended to operators of the form
Sy =

∑ξ
j=1 µjαjyα

∗
j . In the research, it also proved in [30] that S is i-positive

under certain conditions. Additionally it was shown that for S has length of
at most (k2 − 1) and S is (K − 1) positive, then S is completely positive.
The next results provided stronger conditions for S to be completely positive.

Theorem 2.9 ([15]) Suppose an elementary operator S has length at most
(i+ 1)2 − 1 and S is i-positive then S is completely positive.

The research was further extended to infinite dimensional spaces and it was
proved that Sy =

∑ξ
j=1 µjαjyα

∗
j is also positive and of minimal length l and S

is positive with i ≥ 1. Wang and Wu [43] researched on positive operators and
more particularly compactly strong operators. They heavily utilized the upper
and lower spectral radius in there work. In the research they proved that lower
spectral radius also serves as the upper spectral radius. In the work, they used
the following result to establish the relationship between positive operators,
irreducible ideal and the spectral radius, quasi-interior C.

Theorem 2.10 ([40]) For a positive, irreducible ideal, compact operator in
a cone with dimension greater than 1, we have r(S) > 0.

Additionally, the comparison between ideal irreducible operators semi-strong
positivity of operators was done. In the investigation it was established that
ideal irreducibility implies semi-strongly positivity.

Theorem 2.11 ([30]) Spectral radii for normal STSMO is equal to its non-
symmetrized counterpart.

The research was extended to the resolvent (βI − S)−1 of S and it was estab-
lished that for positive quasi-nilpotent operators, r∗(S) = r∗(S) = 0. In our
research since cones and Banach spaces can be decomposed in two or more
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subspace then we investigated spectral properties of positive operators under
direct sum. We extended our investigation to power operators and invertible
positive operators. We also considered scaled operator in our investigation.
At this point we focus on the Sp in general and also Sp of STSMOs. The spec-
tral analysis of operators provides fundamental contributions into both pure
and applied mathematics [37]. It has been used in areas like non-self-adjoint
spectral theory, computational methods, and applications in physics and engi-
neering [6].
In cones, an operator’s Sp is forms the set of its eigenvalues [45]. The spectral
decomposition theorem states that normal operators can be represented using
their eigenvalues and eigenvectors. Unlike the compact cones, operators in
general cones may have a continuous Sp, making spectral analysis more com-
plex [33]. There are several types of spectra namely: Point Sp, continuous Sp,
residual Sp among others [12].
With this broader perspective on Sp of operators, we now consider spectrum
of STSMOs implemented by orthogonal isometries which is the main property
under consideration in this study. There are several important types of EOs,
each with distinct spectral properties. When the underlying Banach space is
a HS, the spectral properties of STSMO depend on the adjoint structure.
It is known that Sp is always a conditioned any space to a larger space [16].
Studies involving comparison of spaces and subspaces normally has certain re-
strictions. Sp being a set also falls under such restrictions. As stated in [7], Sp
has this restriction. Given any subspace of a larger space the Sp can fall under
this space when the larger space is invariant. The restriction criterion ensures
that Sp preserves all its characteristics under invariance. However, this applies
for operators on cones. It is therefore interesting to find out if this criterion
applies to Sp of STSMO.
Another property of Sp that has been studied is its link to the set of infima
that relates to the invertible operators when the invertible operator acts as a
unitary operator [43]. It has been shown that the Sp is always conditioned for
any space to a larger subspace. Characterization of sets and their infima is
considered in [2] for Sp that has been studied and its link to the set of infima
that relates to the invertible mapping when the map acts as a unitary one.
This result shows that Sr belong to this set of infima. The open question that
seeks answers states that: Do STSMOs have Sp sets with infima that contains
its Sr?
The character of convex hull is also important for Sp as seen below. The con-
vex hull Sp is always the intersection of the closure of the set that has the
operator that operates as the unitary one. As stated in [31], the convex hull
Sp is always the intersection of the closure of the set that has the unique op-
erator. The unitary operator ensures that this set is unique. It is important
to establish whether this set is also unique in the case of STSMOs.
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Recently, a characterization involving Drazin Sp of the tensor products of op-
erators has been given. Research shows that the Drazin Sp is equal to the Sp
of the TP of maps. The equality given in [23] applies for general operators
in BA. The result shows that The Drazin Sp is equal to the Sp of the TP of
maps. This equality is not known for the Sp of STSMOs. It is therefore useful
to determine whether this equality holds in the case of EO by comparing the
Drazin Sp ofSTSMOs and the Sp of tensor product of STSMOs.
The other aspect of STSMOs worth considering is the Sp. We give a detailed
literature that has covered this aspect. We begin with the restriction criterion.

Theorem 2.12 ([31]). The Sp is always conditioned for any space to a
cone.

Studies involving comparison of spaces and subspaces normally has certain re-
strictions [34]. Sp being a set also falls under such restrictions. As stated in
Theorem 2.12, Sp has this restriction. Given any subspace of a larger space
the Sp can fall under this space when the larger space is invariant (see[47] for
details). The restriction criterion ensures that Sp preserves all its characteris-
tics under invariance. However, this applies for operators on cones only [1]. It
is therefore interesting to find out if this criterion applies to Sp of STSMOs.
Another property of Sp that has been studied is its link to the set of infima
that relates to the invertible operators when the invertible operator acts as a
unitary operator [14].

Theorem 2.13 ([17]). The Sr is in the set of infima of invertible maps

Characterization of sets and their infima is considered in Proposition 2.13
for Sp that has been studied and its link to the set of infima that relates to
the invertible operators when the invertible map operates like unitaries. This
result shows that Sr belong to this set of infima. The open question that seeks
answers states that: Do STSMOs have Sp sets with infima that contains its
Sr?
The character of convex hull is also important for Sp as seen below.

Theorem 2.14 ([13]). The convex hull Sp is always the intersection of the
closure of the set that has the map that operates like unitaries.

As stated in Theorem 2.14, the convex hull Sp is always the intersection of the
closure of the set that has the map that operates like unitaries. This shows
that it is the smallest set since its an intersection of other sets. The unitary
operator ensures that this set is unique. It is important to establish whether
this set is also unique in the case of STSMOs as recommended in [46]. Recently,
a characterization involving Drazin Sp of the tensor products of operators has
been given.
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Theorem 2.15 ([4]) The Drazin Sp is equal to the Sp of the TP of maps.

The equality given in Theorem 2.15 applies for general operators in cones. The
result shows that The Drazin Sp is equal to the Sp of the TP of maps. This
equality is not known [25] for the Sp of STSMOs. It is therefore useful to
determine whether this equality holds in the case of STSMOs by comparing
the Drazin Sp of STSMOs and the Sp of tensor product of STSMOs.
In our study we were investigating on essential spectrum characterization of
STSMO. This was suggested by [45] on elementary operator and Aluthge trans-
form investigated on various structural properties of elementary operators. In
our study we narrowed down to STSMO and found its polar decomposition
which helped us to have its spectra in terms of the symbols defining it. The
author in [46] studied approximate and defect spectra on analytic elementary
operators on B(H) which was parallel result of Lumer-Rosenblums Spectral
theorem.
Therefore in our study we studied the structure of two-side multiplication op-
erators which preserve point-spectrum as well as the structure of surjective
and non-surjective elementary operators which preserve other subsections of
spectra.From this the open question is whether this is true for entire spectrum.
Moreover we investigated on the entire spectrum of symmetrized two side mul-
tiplication operators induced by orthogonal isometries as suggested by [47].
From spectra theory there is a strong link relating the operator distances and
its Sp [44]. For some operators their norm is equal to the spectral radius.
In our study we worked on spectra of STSMO where we used the already
calculated norms to know the boundary of the spectra.

3 Main results

We carry out our investigation under different technical approaches. We be-
gin by providing the necessary condition that guarantee (A1 ⊕ ... ⊕ An,m)−
spectral analysis. In this section, we investigate various spectral properties of
symmetrized two sided multiplication operators. We note that all the STSMO
are induced by orthogonal isometries unless stated otherwise.

Proposition 3.1 Let C and J be conjugate STSMOs on B(H) and suppose
U = CJ and CJ = JC, then δ(U) = δ(CJ) ⊆ δ(C)δ(J).

Proof. Suppose C and J are conjugates, then by Jacobson’s Lemma, nonzero
points of the spectrum of CJ and JC coincide. Further, since CJ is invert-
ible then it follows that CJ is also invertible. Therefore, JC = J(PJP−1) =
(JP )JP−1. Since CJ is invertible, then 0 is not in the residual spectrum of C∗

hence J is invertible. Finally, CJ = (CP )P and so δ(CJ) = δ(JC) = δ(PCP ).
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In the next result, we provided the link between point spectrum and the nu-
merical radius.

Lemma 3.2 Let C and J be conjugate STSMOs on B(H) then δp(CJ) ⊆
W (CJ).

Proof. Suppose β ∈ δp(CJ) then we have that βx = CJx. Therefore, β =
β⟨x, x⟩ = ⟨βx, x⟩ = ⟨λCx, x⟩ = ⟨CJx, x⟩. This implies that β ∈ δp(CJ). Thus
δp(CJ) ⊆ W (CJ).

Again we show that the above result also holds under direct sum.

Theorem 3.3 Let Ci and Ji be conjugate STSMOs on B(H) then δp(C1J1⊕
...⊕ CnJn) ⊆ W (C1J1 ⊕ ...⊕ CnJn).

Proof. Suppose (β, ..., β) ∈ δ(C1J1 ⊕ ...⊕ CnJn), then we have x1 + ...+ xn ∈
H1 ⊕ ...⊕Hn and (β, ..., β) = δ(C1J1)∪ ...∪ δ(CnJn) = ⟨C1J1 ⊕ ...⊕CnJnx1 +
...+ xn, x1 + ...+ xn⟩. Therefore, (β, ..., β) ∈ W (C1J1) ∪ ... ∪ δ(CnJn).

Next we extend our investigation to summation technique for operators as a
consequence.

Corollary 3.4 Let Ci and Ji be conjugate STSMOs on B(H) and suppose
that Ui = CiJi and U1 ⊕ ...⊕ Un = C1J1 ⊕ ...⊕ CnJn, then δ(U1 ⊕ ...⊕ Un) =
δ(C1J1 ⊕ ...⊕ CnJn).

Proof. Suppose C1⊕ ...⊕Cn and J1⊕ ...⊕Jn are conjugates, then again by Ja-
cobson’s Lemma, the nonzero points of the spectrum of (C1J1⊕ ...⊕CnJn) and
J1C1 ⊕ ...⊕ JnCn are equal. Since Ci and Ji are invertible, then if follows that
J1C1⊕...⊕JnCn is invertible. Therefore, δ(U1⊕...⊕Un) = δ(C1J1⊕...⊕CnJn).

We now examine (C1J1) ∪ ... ∪ δ(CnJn) and its adjoint.

Proposition 3.5 Suppose Ti are STSMOs, then (C1⊕...⊕Cn)(T1⊕...⊕Tn)
commutes with the spectral measure of (T1 ⊕ ...⊕ Tn)

∗(T1 ⊕ ...⊕ Tn).

Proof. Since (C1 ⊕ ... ⊕ Cn)(T1 ⊕ ... ⊕ Tn) commutes with its adjoint, then
its square is also a commutant. Therefore, (C1 ⊕ ... ⊕ Cn)(T1 ⊕ ... ⊕ Tn) also
commutes with p(T1 ⊕ ...⊕ Tn)

∗(T1 ⊕ ...⊕ Tn) where p is a polynomial.

At this point, we examine the spectral properties of elementary operators
within the norms.

Lemma 3.6 Let Xi be uniformly convex Banach spaces and Ti ∈ B(Xi)
then ∥ (I1⊕...⊕In)−(T1⊕...⊕Tn) ∥= 1+ ∥ (T1⊕...⊕Tn) ∥ if ∥ (T1⊕...⊕Tn) ∥∈
δ(T1 ⊕ ...⊕ Tn).
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Proof. Suppose that Ti : i = 1, ..., n are elementary operators, then they
are all bounded linear operators on the uniformly convex Banach space. So,
∥ (I1 ⊕ ... ⊕ In) − (T1 ⊕ ... ⊕ Tn) ∥= 1+ ∥ (T1 ⊕ ... ⊕ Tn) ∥ iff ∥ (T1 ⊕ ... ⊕
Tn) ∥∈ δap(T1⊕ ...⊕Tn). Now, by containment for all elementary operators Ti,
δap(T1⊕ ...⊕Tn) ⊆ δ(T1⊕ ...⊕Tn). Therefore, ∥ (T1⊕ ...⊕Tn) ∥∈ δ(T1⊕ ...⊕Tn)
iff ∥ (T1 ⊕ ...⊕ Tn) ∥ is in the numerical range of (T1 ⊕ ...⊕ Tn).

We extend our investigation to the scaled elementary operators.

Lemma 3.7 Let Ti, Si on B(Hi), i = 1, ..., n be STSMOs and that 1 < p <
∞. Suppose ∥ (I1⊕ ...⊕ In)−Mp,(T1⊕...⊕Tn),(S1⊕...⊕Sn) ∥= 1+ ∥ (T1⊕ ...⊕Tn) ∥∥
(S1 ⊕ ... ⊕ Sn) ∥, then for all λ ∈ C with | λ |= 1, λ ∥ (T1 ⊕ ... ⊕ Tn) ∥∈
δ(T1 ⊕ ...⊕ Tn) and λ ∥ (S1 ⊕ ...⊕ Sn) ∥∈ δ(S1 ⊕ ...⊕ Sn).

Proof. Suppose 1 < p < ∞, then Cp(H1 ⊕ ...⊕Hn) is uniformly convex. Now
since Ti and Si are STSMOs, then we have ∥ (I1⊕...⊕In)−(T1⊕...⊕Tn)(S1⊕...⊕
Sn) ∥= 1+ ∥ (T1⊕...⊕Tn)(S1⊕...⊕Sn) ∥= 1+ ∥ (T1⊕...⊕Tn) ∥∥ (S1⊕...⊕Sn) ∥
. Thus ∥ (T1⊕ ...⊕Tn) ∥∥ (S1⊕ ...⊕Sn) ∥∈ δap((T1⊕ ...⊕Tn)(S1⊕ ...⊕Sn). This
implies that ∥ (T1⊕ ...⊕Tn) ∥∥ (S1⊕ ...⊕Sn) ∥∈ δ(Mp,(T1⊕...⊕Tn),(S1⊕...⊕Sn). We
note that δ(Mp,(T1⊕...⊕Tn),(S1⊕...⊕Sn)) = δ(T1⊕ ...⊕Tn)δ(S1⊕ ...⊕Sn) Therefore,
for λC such that | λ |= 1, we have λ ∥ (T1 ⊕ ... ⊕ Tn) ∥∈ δ(T1 ⊕ ... ⊕ Tn) and
λ ∥ (S1 ⊕ ...⊕ Sn) ∥∈ δ(S1 ⊕ ...⊕ Sn).

In the next result, we show that under certain conditions the spectrum of
scaled and non-scaled operators coincide.

Theorem 3.8 Let MT,S be a STSMO. Let T, S ∈ B(H) and | λ |= 1 be a
scalar such that TT ∗2T = λT ∗T 2T ∗, then ∥ TT ∗2T ∥ and ∥ T ∗T 2T ∗ ∥ coincide.

Proof. Suppose T is a STSMO, then we have ∥ (I−TT ∗2T ) ∥= 1− ∥ TT ∗2T∥.
Since ∥ TT ∗2T ∥∈ δap(TT

∗2T ), then it follows that for any λ ∈ C and for | λ |=
1, we have that ∥ TT ∗2T ∥=| λ |∥ T ∗T 2T ∗∥. This implies that ∥ TT ∗2T ∥=∥
T ∗T 2T ∗∥. Therefore, from ∥ (I − TT ∗2T ) ∥= 1− ∥ TT ∗2T ∥= 1− ∥ T ∗T 2T ∗∥.
This implies ∥ T ∗T 2T ∗ ∥∈ δap(T

∗T 2T ∗). Hence, ∥ T ∗T 2T ∗ ∥∈ δ(T ∗T 2T ∗).

In the next result, we provide conditions under which STSMOs have real spec-
trum.

Theorem 3.9 Let T be a STSMO. Let T = T ∗ and also let x ⊥ y, then the
spectrum of T is real.

Proof. Let T be self adjoint and x, y ∈ H be nonzero vectors, then λ⟨x, x⟩ =
⟨x, Tx⟩ = ⟨T ∗x, x⟩ = λ⟨x, x⟩. Therefore, if λ ∈ R, then λ = λ. Now suppose
that Ty = βy, then we have that λ⟨x, y⟩ = ⟨Tx, y⟩ = ⟨x, T ∗y⟩ = ⟨x, Ty⟩ =
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β⟨x, y⟩. Now, λ⟨x, y⟩ = β⟨x, y⟩ implies that (λ − β)⟨x, y⟩) = 0. Since λ ̸= β,
then it follows that ⟨x, y⟩ = 0 which implies that x ⊥ y.

Next we examine essential spectral properties of quasi-normal operators after
establishing a condition that ensures that T is a STSMO.

Corollary 3.10 Let T on B(H) be quasi-normal and suppose that TTT =
TT 2, then δe(TTT ) = δe(λTTT ) = λδe(TTT ).

Proof. If T is quasi-normal, then TTT is quasi-normal and so (TTT )2 is also
quasi-normal. Therefore, both TTT and (TTT )∗ are p−hyponormal. Thus
λTTT and TTT are also quasi-normal. Since it is well established that T1 and
T2 are quasi-similar then they are quasi-normal. So, δe(T1) = δe(T2). Hence,
δe(TTT ) = δe(λTTT ) = λδe(TTT ).

Extension of our investigation to commutants of STSMOs is carried out and
we investigate the approximate point spectrum of such operators.

Proposition 3.11 Let T and S be commutants, suppose MTS(X) = TXS+
SXT, then δ(TS) = δ(ST ) = δπ(TS).

Proof. Let λ = 1 and A = TS,A∗ = ST ∗. Then A∗A = ST ∗TS = STT ∗S.
Now if Q,R ∈ B(H) and QR = RT where say R is normal, then QR∗ = R∗T
then we have T ∗S = ST ∗. Thus A∗A = TSST ∗. But TSST ∗ = AA∗ This
implies that A∗A = AA∗. Therefore A is normal. Consequently δ(TS) =
δ(ST ) = δπ(TS) = λδπ(TS).

We now investigate the spectral properties when they are STSMOs are induced
by 2−isometries.

Lemma 3.12 Let Ti be a symmetrized two side multiplication 2− isome-
tries. Then 1 ∈ δ(T1 ⊕ ...⊕ Tn)

∗(T1 ⊕ ...⊕ Tn).

Proof. We proof this by contradiction. Let 1 is not in δ(T1⊕ ...⊕Tn)
∗(T1⊕ ...⊕

Tn), then it follows that A1⊕...⊕An = (T1⊕...⊕Tn)
∗(T1⊕...⊕Tn)−(I1⊕...⊕In)

is invertible. Now by definition of 2− isometry, δ(T1 ⊕ ... ⊕ Tn)
∗(A1 ⊕ ... ⊕

An)(T1 ⊕ ... ⊕ Tn) = δ(A1 ⊕ ... ⊕ An). Alternatively, (A1 ⊕ ... ⊕ An)
1
2 (T1 ⊕

... ⊕ Tn)(A1 ⊕ ... ⊕ An)
− 1

2 )∗(A1 ⊕ ... ⊕ An)
1
2 (T1 ⊕ ... ⊕ Tn)(A1 ⊕ ... ⊕ An)

1
2 =

I1⊕ ...⊕In. So, T1⊕ ...⊕Tn is is semi-isometric and hence isometric. Therefore,
δ(I1 ⊕ ... ⊕ In) = δ(I1) ∪ ... ∪ δ(I1) = {1} ∪ ... ∪ {1} = {1}. This implies that
1 ∈ δ(T1 ⊕ ...⊕ Tn)

∗(T1 ⊕ ...⊕ Tn).

Next, we examine the spectral properties of STSMOs which are binormal.

Theorem 3.13 Let MT,S be a STSMO. Suppose that for | λ |= 1 and
TS∗2T = λT ∗S2T ∗. Then β4 ∈ δ(T ∗S2T ).
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Proof. Let β ∈ δ(T ), then by self adjointedness of T we get T ∗S2T = TS2T =
T 4. Furthermore, since | λ |= 1 then also λT ∗S2T ∗ = T 4. Now if β ∈ δ(T )
then for any n ∈ N , we have βn ∈ δ(T n). Therefore, β4 ∈ δ(T ∗S2T ).

4 Open Problems

Characterization of Symmetrized Two-Sided Multiplication Operators have
been done over years in-terms of their properties which include numerical
ranges and norms among others. However, characterizing the spectrum and
norms have not been exhausted still remains interesting. There exists an open
question requiring the determination of the norms of elementary operators in a
general Banach space setting. Since there is a strong relation ship between the
norm and spectral radius, therefore it was of great significance for this study
to characterize spectral properties of Symmetrized Two-Sided Multiplication
Operators as an avenue that helps in solving the open problem.
Problem 1: Can one develop an efficient algorithm for determining spec-
tra Symmetrized Two-Sided Multiplication Operators as characterized here?
Problem 2: Do Symmetrized Two-Sided Multiplication Operators preserve
distance even when they are subjected to tensor norms?

References

[1] Abe T., Akiyama S., Hatori O., Isometries of the special orthogonal group,
Linear Algebra Appl., 439(2013), 174-188.

[2] Aouichaoui M. A., Mosic D., On polynomially partial-A-isometric opera-
tors, Turkish journal of Mathematics, 47(7), (2023), 2122-2138.

[3] Bagheri-Bardi G. A., On the decomposition of contraction and Isometries,
Scientia Mathematicae Japonicae, 1(2014), 1-8.

[4] Bermudez T., Saddi A., Zaway H., (A,m)-Isometries on Hilbert spaces,
Bull. AMS, 102(2017), 1-12.

[5] Bourgin D. G., Approximate isometries, Bull. Amer. Math. Soc., 52(1946),
288-292.

[6] Bourgin D. G., Approximately isometric and multiplicative transforma-
tions on continuous function rings, Duke Math. J., 16(1949), 385-397.

[7] Bourgin D. G., Two dimensional ε-isometries, Trans. Amer. Math. Soc.,
244(1978), 85-102.



Spectra of Symmetrized Two-Sided Multiplication Operators 67

[8] Bourgin D. G., Approximate isometries on finite dimensional Banach
spaces, Trans. Amer. Math. Soc., 207(1975), 309-328.

[9] Cheng L., Dong Y., A note on the stability of nonsurjective ε-isometries
of Banach spaces, Proc. Amer. Math. Soc., 148(2020), 4837-4844.

[10] Cheng L., Dong Y., Zhang J., On stability of nonlinear non-surjective
ε-isometries of Banach spaces, J. Funct. Anal., 264(2013), 713-734.

[11] Cheng L., Zhou Y., On perturbed metric-preserved mappings and their
stability characterizations, J. Funct. Anal., 266(2014), 4995-5015.

[12] Coburn L. A., The C∗-algebra generated by an isometry, Bull. Amer.
Math. Soc., 73(1967), 8-19.

[13] Curto R. E., The spectra of elementary operators, Indian Uni. Math. J.,
32(1983), 193-197.

[14] De Jeu M., Pinto P. R., The structure of doubly non-commuting isome-
tries, Adv. Math., 368(2020), 107-149.

[15] Dilworth S. J., Approximate isometries on finite-dimensional normed
spaces, Bull. London Math. Soc., 31(1999), 704-714.

[16] Embry M., Rosenbulm M., Spectra tensor products and linear operator
equations, Pacific J. Math., 53(1974), 95-107.

[17] Figiel T., On non linear isometric embeddings of normed linear spaces,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16(1968), 185-
188.

[18] Guesba M., Symmetric properties of elementary operators, Novi Sad J.
Math., 61(2012), 1-6.

[19] Gevirtz J., Stability of isometries on Banach spaces, Proc. Amer. Math.
Soc., 89(1983), 633-636.

[20] Gruber P. M., Stability of isometries, Trans. Amer. Math. Soc., 245(1978),
263-277.

[21] Guralnick R.M., On isometry groups of self-adjoint traceless and skew-
symmetric matrices, arXiv:1709.04507.

[22] Koldobsky A., Operators preserving orthogonality are isometries, arXiv:
math/9212203v1[math.FA]., (1992), 1-4.

[23] Matache V., Composition operators whose symbols have orthogonal pow-
ers, Houston journal of Mathematics, 37(3), (2011), 845-857.



68 Jacob Gachago, Benard Okelo, Willy Kangogo

[24] Manuel G., Mostafa M., Linear maps that preserve Semi- Fredholm opera-
tors acting on Banach Spaces, Acta scientiarum Mathematicarum, 84(12),
(2018), 137-149.

[25] Hatori O., Isometries of the unitary groups in C∗-algebras, Studia Math.,
221(2014), 61-86.

[26] Hatori O., Molnár P., Generalized isometries of the special unitary group,
Arch. Math., 106(2016), 155-163.

[27] Hatori O., Molnár P., Isometries of the unitary group, Proc. Amer. Math.
Soc., 140(2012), 2141-2154.

[28] Hyers D. H., Ulam S. M., On approximate isometries, Bull. Amer. Math.
Soc., 51(1945), 288-292.

[29] Hyers D. H., Ulam S. M., On approximate isometries on the space of
continuous functions, Ann. Math., 48(1947), 285-289.

[30] Kiratu B. N., On the Spectral properties of 2-isometries and related opera-
tors on a Hilbert space, Masters Thesis, School of mathematics, University
of Nairobi, 2011.

[31] Koehler D., Rosenthal P., On isometries of normed linear spaces, Studia
Mathematica, 36(1970), 213-216.

[32] Koldobsky A., Operators preserving orthogonality are isometries, Proc.
R. Soc. Edinburgh Sect. A, 123(1993), 835-837.

[33] Omladi M., Semrl P., On non linear perturbations of isometries, Math.
Ann., 303(1995), 617-628.

[34] ørgensen P.J., Proskurin D., On C∗-algebras generated by pairs of q-
commuting isometries, J. Phys. A, 38(12), (2005), 266-780.

[35] Okelo. N. B, Norms of self-adjoint two-sided multiplication operators in
norm-attainable class, MathLAB journal, 2(2020), 12-22.

[36] Ould A. M., On the joint (m, q)-partail isometries and the joint m-
invertible tuples of commuting operators on a Hilbert space, Italian jour-
nal of Pure and Applied Mathematics, 4(2018), 438-463.

[37] Patel S. M., A note on quasi-isometries, Glasnik Matematicki, 35(55),
(2000), 307-312.

[38] Qian S., ε-Isometric embeddings, Proc. Amer. Math. Soc., 123(1995),
1797-1803.



Spectra of Symmetrized Two-Sided Multiplication Operators 69

[39] Sain D., Manna J., Paul K., On local preservation of orthogonality and
its application to isometries, Linear Algebra Appl., 690(2024), 112-131.

[40] Sarkar J., Wold decomposition for doubly commuting isometries, Linear
Algebra Appl. 445(2014), 289-314.

[41] Schaefer H., Some spectral properties of positive linear operator, Pacific
journal of Mathematics, 10(3), (1960), 1009-1019.

[42] Schmoeger C., Partial Isometries on Banach spaces, Bul. AMS, 67(2000),
1-13.

[43] Wang C., Wu X., On the spectral theory of positive operators and pde
applications, Discrete and continuous dynamical systems, 40(6),(2020),
3171-3200.

[44] Wolfgang A., Spectral properties of Lamperti operators, Indiana Univer-
sity Mathematics journal, 32(2), (1983), 199-215.

[45] Wu P. Y., Approximation by partial isometries, Proceedings of Edinburgh
Mathematical society, 29(1986), 255-261.

[46] Zenon J. J,Bong. J, and Jan S., m-isometric operator and their local
properties, arXiv:1906.05215v1[math]., (2019), 1-19.

[47] Weber M., On C∗-algebras generated by isometries with twisted commu-
tation relations, J. Func. Anal., 264 (2013), 1975-2004.


