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Abstract

This paper presents new integral formulas involving two pa-
rameters: an integer parameter and a real parameter. These
formulas are notable for their generality, as well as for the
method of proof, which relies on the properties of the digamma
function. Detailed derivations are provided, offering a fresh
perspective compared to more conventional techniques. Addi-
tionally, the paper proposes an open problem concerning the
possibility of proving these results using standard integral cal-
culus methods.
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1 Introduction

General integral formulas play a fundamental role in mathematics, physics and
engineering. They are often used as intermediate tools to solve sophisticated
problems. A substantial body of such formulas already exists, many of which
are comprehensively compiled in [7]. Nevertheless, developing new, more gen-
eral integral formulas is an active area of ongoing research, as demonstrated
by the recent contributions in [8, 9, 10, 11, 2, 3, 4, 6, 1].

In this paper, we first derive a new integral formula involving two adjustable
parameters: an integer parameter, n, and a real parameter, x. The integral in
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question is simply equal to nlnn. The proof is innovative in that it is based
on the properties of the digamma function. This demonstrates the analytical
power of this special function in evaluating definite integrals. From our main
result, we deduce two additional integral formulas. Notably, two classical
integral formulas from [7] appear as special cases, illustrating the broader
applicability of our approach.

The remainder of the paper is organized as follows: Section 2 presents the
main result. Two further results are given in Section 3. An open problem
is formulated in Section 4. Finally, concluding remarks and perspectives are
provided in Section 5.

2 Main result

Our main integral formula is presented below. We emphasize its simplicity
and the flexibility of the parameter choices.

Proposition 2.1 For any n € N\{0,1} and z > 0, we have

/+°° folz,t) — ne "
0

] - dt =nlnn,
_e_

where )
ful,t) = 3 etekin
k=0

Proof. The key to the proof lies in introducing the digamma function and ex-
ploiting its well-known properties. First, we recall that the digamma function
at > 0 is denoted by ¥(x) and is defined as the derivative of the loga-
rithm of the gamma function. More precisely, defining the gamma function as
I'(z) = 0+Oo t*~tetdt, we have

U(a) = D) =

The known properties of this function are listed in [7, Section 8.36]. See also
[5]. In particular, it has the following integral representation:

o= [ (5 i) 0

See [7, Formula 8.3611].
Moreover, it satisfies a specific multiplication formula, which is described
as follows: For any n € N\{0, 1}, we have

1= k
Y(nx) = 521/’ <x—|— ﬁ) + Inn.

k=0
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See [7, Formula 8.3656]. As the first step of this proof, we propose to rearrange
this formula as follows:

nip(nz) —:z:;gu (w%) = nlun. (2)

The parameters n and z will correspond to those involved, and the term on
the right-hand side will be the desired result.
Specifically, substituting Equation (1) into Equation (2), we derive

+00 e—t o—nat n-1 et e—(@tk/n)t

=0

so that

“+oo —t —nxt +00 —t t
/ ne—— ne dt—/ ne— Inl2, ) dt =nlnn,
0 t 1—et 0 t 1—e~

which is equivalent to

+o0 et ne ="t et fn (.CL’, t)
/0 {(nT—l_et)—(nT—l_etﬂ dt =nlnn,

so that, after simplifications,

/+oo fn(l", t) _ nefnmt
0

= dt =nlnn.
—e

This ends the proof of Proposition 2.1. 0
In particular,

e taking n = 2, Proposition 2.1 gives

dt =
1—et 0 1—et

=nlnn =2In2,

dt

/+OO et 6—(J:+1/2)t — Qe 2t B +oo fn(x7 t) — pe—nat
0

e taking n = 3, Proposition 2.1 ensures that

dt

oo —at + 67(x+1/3)t + ef(x+2/3)t _ 3673xtd +o00 fn(f t) — pe—nat
t = ’
/0 1—et /0 1—et

=nlnn=3In3,
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e taking n = 4, Proposition 2.1 gives

/-0-00 et + 67(93+1/4)t + 67(z+2/4)t + 67(w+3/4)t — fe4at "
0 1 - e_t
+o0 —nxt
n 7t -
:/ fn(2,1) = e dt =nlnn =41In4.
O 1 - €7t

Similar examples can be given for larger values of n. To the best of our
knowledge, both the general integral formula and the special cases listed
above are new. They do not appear in [7], at least not in this form.

3 Other results

Thanks to its functional simplicity and adjustable parameters n and x, Propo-
sition 2.1 is flexible. The proposition below illustrates this by presenting two
additional integral formulas that deviate from an exponential nature.

Proposition 3.1 For any n € N\{0,1} and z > 0,

1. we have ) )
n at — nt""
/ gn(,1) = dt =nlnn,
where )
Gnla,t) =Y o=l
k=0
2. we have
+o0o 1 n
/ - {hn(x,t) ] dt = nlnn,
o ¢ (14 t)ne
where )

(1 t)mtk/

Proof. The proofs of the two items are based on Proposition 2.1, i.e., for any
n € N\{0,1} and = > 0, we have

+o00 o —nxt
/ Julw,t) = ne dt =nlnn, (3)
0

1 —et

where
1

Fula,t) =) e terhimr,

k=0

3

and appropriate changes of variables. The details are given below.
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t

1. Making the change of variables y = e, i.e., t = —Iny, into Equation

(3), we obtain

fn —Iny) — ne ==y 1
] Ty ——dy | =nlnn,

so that
T _
/ fal ny™ dy =nlnn,
where )
1 - _
fi(a,y) = (@ —Iny) = Sy = (2, y).
k=0

The desired formula is established.

2. Making the change of variables z = e’ —1, i.e., t = In(1+2), into Equation
(3), we get

too f (2, In(1 + 2)) — ne ne(+2) 1
; [~ o—ln(is2) <1+Zdz> =nlnn,
so that
+oo 1
/ fHx, 2) — L dz =nlnn,
0 (14 z)m
where
n—1 1
fi(%z) :fn(xvln(l'i_z)) = W :hn(x,z),
k=0
The desired formula is obtained.
This ends the proof of Proposition 3.1. 0

In particular,

e taking n = 2, the first item in Proposition 3.1 ensures that

1 42-1 z—1/2 _ o942z—1 1 _ py4nz—1
t t 21t (2, 1) — nt
/ i (ﬁ:/‘g@ ) =™

=nlnn=2In2,

which is also a formula indicated in [7, Formula 3.2721],
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e taking n = 3, the first item in Proposition 3.1 gives

1 4z—-1 x—2/3 z—1/3 _ 943z—1 1 _ o nx—1
t t ¢ 3t (2, 1) — nt
/ + + df — / gn(z,t) —m 0t
0 0

1-t 1—t
=nlnn=3In3,
which is also a formula indicated in [7, Formula 3.2722],

taking n = 4, the first item in Proposition 3.1 implies that

/1 tmfl + t$73/4 + t$72/4 + t$71/4 _ 4t4x71dt

1 nr—1
w2, 1) — t
:/ gnl,t) =1 dt =nlnn =41In4,

. 1—¢

taking n = 2, the second item in Proposition 3.1 ensures that

/+°°1 1 1 2
- + — dt
o tLA+HT (A2 (144>

+O<>1 n
[ et - —"—|dt=ninn=2m2,
y i+ o

e taking n = 3, the second item in Proposition 3.1 gives

/+°O 1 1 1 1 3
- + + = dt
0 t (1 +t):): (1 +t):):+1/3 (1 _|_t)x+2/3 (1 +t)3:p

teo n
= = |hp(z,t) = ————| dt =nlnn =31In3,
o 0 (L+t)m

taking n = 4, the second item in Proposition 3.1 ensures that
/+°° 1 1 N 1 n 1 n 1
o t A+t (14e)mtl/4s (T4 t)=+2/4 0 (1 +¢)ot3/4
4
—— | dt
(1+ t)‘“‘l
n

:/Om% {hn(x,t)—ﬁ] dt:/;w% [hn(w,t)—m dt

=nlnn=41n4.

Similar examples can be given for larger values of n. Thus, there are two
special cases available in [7, Formulas 3.2721 and 3.2722]; the others are new

additions to the literature.



New two-parameter integral formulas proved via the digamma function 37

4 Open problem

The proof of Proposition 2.1 is based on the use of the digamma function and
several of its key properties. This approach is relatively uncommon when it
comes to deriving integral formulas, and thus offers a novel perspective within
the field. The following question naturally arises:

Can Proposition 2.1 be proved using more traditional or elementary tech-
niques in integral calculus?

For certain specific values of the parameters, such as n = 2 and = = 2,
the answer is affirmative: the result can be derived using a sum of standard
primitives. However, in the general case, the situation remains unclear and
further investigation is required to establish whether a fully elementary proof
exists.

A similar question applies to the integral identities established in Proposi-
tion 3.1. Investigating alternative proofs of this kind could deepen our under-
standing of the structure and origin of these formulas.

5 Conclusion and perspectives

In this paper, we introduced a new integral formula that depends on two pa-
rameters, for which we provide a proof based on the properties of a special
function: the digamma function. From this main result, we derived two ad-
ditional integral formulas, some of which include classical formulas as special
cases. Future work may involve exploring whether these formulas can be de-
rived using more traditional integration techniques, as well as investigating po-
tential generalizations involving other special functions or higher-dimensional
analogues.
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