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Abstract

Isometries are special mappings with a property of dis-
tance preservation. This property makes them unique and in-
teresting in-terms of characterization. However, it is very
difficult to do characterizations of properties of isometires in
a general Banach space setting due to the intricate underlying
structures in Banach spaces. In this paper, we characterize
spectral properties of isometries and in particular when they
are orthogonal. We show that orthogonal isometries preserve
distance even when they are subjected to direct sum decompo-
sition.

Keywords: Spectrum, Operator, Isometry, Orthogonality.
2010 Mathematics Subject Classification: Primary 47A30; secondary
46B10.

1 Introduction

Studies on isometries have been carried out by many researchers with nice
results obtained [1]. The work of [46] investigated m-isometric operators and
there properties. In the investigation they established conditions for an oper-
ator to preserve orthogonality given that there are distinct eigenvalues. They
also established orthogonality of diagonal Jordan block that corresponds to
certain distinct eigenvalues. Additionally, it was established that if S € B(H)
and H is non empty then the spectrum of S is contained in the topological
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boundary (7) or the spectrum of S is in the closure of the unit disc (D). This
was further investigated by [2] in operator spaces. Research on orthogonality
of generalized eigenvector and isometries has also been done by [3]. The re-
search was based on the fact that if 7" is a Jordan block and Lg(z) is a linear
span, then 0(Sp,()) = ¥ and in this case y is eigenvalue of S. This was extend
the research of [4] which considered the link between spectral properties of the
direct sum of a finite number of Jordan blocks and further consider the infinite
number of Jordan blocks. The study of [5] also consider S™ and its direct sum
of both finite and infinite number of Jordan blocks. In [3] the work established
the link between an isometry in B(H) and shift operators in W*-algebra. In
the work, it was established that if y is an isometry and £ and ( are mutually
orthogonal and commute with y and if £+ = 1, then {y& and (y( are unitary
shift and unitary in W*-algebra respectively. In [6], the investigation estab-
lished that {yé and y share the orthogonal shift spectrum. Additionally, a
p-shift sequence spectrum of y was developed with the initial projection in [7].
It was further established that if y is a unilateral shift then there is orthogonal
shift spectrum of y with total summation 1 as seen in [8]. The work of [44]
researched on the link between the intersection of I'; = {x € C :| X |=y} and
the 6(5). In the work, they established that if I'; N §(S) where S is a Lam-
perti operator, then the spectral projection belongs to dr(S). It was further
established in [9] that if S and S" are Lampert operators then d7(S) is a band
projection. In [10] established S@ S" also has a band projection. Furthermore,
it has been established that S™ : n € A also has a projection band in d7(S™)
see ([11]-[15] and the references therein).

The study of [37] investigated properties of quasi-isometries. In the research it
was established that if S is quasi-isometry, then the approximate point spec-
trum is contained in S*, further if £ € §, € (S*) and € € 6, € (S), £ € a € (S*),
then £ € a € () as seen in [16] and finally it was concluded that eigenspace of
non-zero eigenvalues of S are orthogonal [17]. The work of [42] extended the
research on partial isometries. In the research a link between the spectrum for
decomposably regular operator in a Banach space and the closed disk was es-
tablished. The link was further extended by [19] to spectral radius and power
bounded operators S™ Vn € N. Moreover, research was further extended to
both left and right decomposable regular operators and it was established in
([20]- [29]) that the point spectrum and the spectrum of these partial isometries
do not share any element with the D. It was further established that if S; and
Sy are partial isometries and ||S;—Ss|| < 1 then §(S;) = §(S2) = D as discussed
in [30]. An investigation on the orthogonality of isometries and particularly
N(S7) and the inverse Sy of S; was established in [31]. In the investigation
it was established that if N(S7) # 0 then N(S;) L So(X) which implies both
ways that || [ — 515, [|= 1. This was further characterized in a general set up
by [32]. Authors in [36] researched on tuples of commuting partial isometries.
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In the investigation a link was established between d-tuple of operators in a
Hilbert space and the point spectrum and the approximate point spectrum. In
the research the spectral properties for single variable partial operators were
also researched as seen in [22]. It was also established in [24] that the approx-
imate point spectrum in contained in S*. In [23], the study established that
it § = (954,...,9,) has eigenvalues g = (34, ..., B, and v = (71, ..., 7, ) such that
> (1<i<n) Bi%i # 1 then they are orthogonal. This result was extended by [35],
[33] and [34] to norm convergency of || (S; — 8;)xm, and || (S; — ¥i)ym || to zero
and approximate point spectrum and it was established that if those conditions
are satisfied then (x,,, ym) — 0 as (m — 00). The investigation was extended
to invertible tuples by [38]. In the research it was established that [0] is not con-
tained in 04, (S). Further if 8 = (B4, ..., Bn € dap(T), then 1 € 0y (X1<icp BT
and finally if 8 = (B4, ..., B € 6,(T'), then 1 € 6,(31<;<, B:T; as given by [39)].
In [40], the author researched on isometries and established that an isometry
is a partial isometry if there is a projection onto S € B(X) of norm 1. The
link between non-zero partial isometry and contractive inverse has also been
investigated by [40], [41] and [43]. In the researches it was established that the
norms of the two are equal and the two norms are generally equal to 1. The
spectral properties of the two operators were further investigated in [47]. In
the research it was established that if T" is the contractive generalized inverse
of S, in the closed unit disc D then §(7") C §(D). Further, it was established
in [44] that if the intersection of the resolvent set of S or 7" and D is a non
empty set, then the spectrum of 7" and the spectrum of S are all equal to D.
The investigation further established that D C 6(7") and D C 4§(S) then it
follows that D C §(T) and D C §(S).

The investigation was extended to holomorphic isometries and in this case it
was established that 6(S) C D. A link between power bounded operator of
partial isometry and its generalized contractive inverse is T™S™T" for an in-
teger m has been established [45]. Additionally, it was established that if S
is either right or left invertible but not generally invertible then the spectrum
of both T and S are equal to D. A link between the point spectrum and
the two operators was also established [46]. In the investigation it was estab-
lished that D is contained in the point spectrum of S and 7. Further it was
noted that the intersection of D and §(S) is empty. For holomorphic opera-
tors it was further established that if S is not in B(X)™! then the spectrums
of T and S are all equal to D. Additionally, for two partial isometries whose
difference in norm is less that 1 it was also established that the spectrums
of this two operators is also equal to D. Finally it was established that for
the kernel of S is orthogonal to T'(z) and also the kernel of T" is orthogonal
to S(X). In [4], the authors researched on the spectral properties of (A, m)-
isometries and established conditions that ensures that (A, m)-isometries are
N-supercyclic and (A, m)-isometries are not N-supercyclic. In the investiga-
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tion, it was established that spectra of (A, m)-isometries of A # 0 intersects
S'. Furthermore, it was established that if T" is a compact subset of a complex
space and T'N JD # () then for a finite dimensional H and S, A € B(H),
and if A > 0 intersect with S then 6(S) = T'. Furthermore it was established
that power bounded isometries are not supercyclic. The investigation was fur-
ther directed to the relationship between the approximate spectrum of A and
S € B(H) and it was established that if 0 is not a member of d,,(A) then for
an (A, m)-isometry S can never be supercyclic. The research further consid-
ered the point spectrum and it was established that if 0 is not in the point
spectrum then [|AS*|| < M for all integers £ > 0 and AS* — 0 as k — oo.
Conditions for an isometry not to be N-supercyclic were also investigated.

In [33], the work researched on partial isometries. In the investigation, the link
between properties of partial isometries, orthogonality and subspaces were an-
alyzed. Moreover, it was established that if S is a normal partial isometry
and S = SS*S then B = B | B | for all B € §(S). Furthermore, it was
established that if S is a partial isometry then SS* and S*S are orthogonal
projections into ker(S)* and ran(S) respectively. Also, the study established
that partial isometries can be obtained by find the product of orthogonal pro-
jection with unitary operators. It was established the partial isometry can be
obtained by even commuting the orthogonal projection with the unitary oper-
ator. The investigation further proved that if S and T are partial isometries,
that ST is also a partial isometry provided that S*S and TT™* also commute.
It was further established that square contractions can be factored into partial
isometries if they unitary or singular [34]. The research further proved that for
square partial isometries, the tensor product of two partial isometries is also
an isometry. Thereafter, they established the link between partial isometries
and the spectrum in the D~ and the investigation was extended to polynomials
and it was established that if the solution of the monic polynomials lies in D~
then zero is the characteristic polynomial of partial isometry. A link between
the spectrum partial isometry and D~ was also established.

Recently, [10] investigated properties of properties of diagonal partial isome-
tries. In the investigation it was established that if S = [Sj]{, is a block
upper triangular matrix and each S = [Sjk];{k is upper triangular then S ~
S11PSo0®...H0Sq. An isomorphism between partial isometries was also estab-
lished showcasing the extent to which eigenvalues obtained form the polyno-
mials of partial isometries. Furthermore, it was established that if S,T" € M,
then M (S)M(T) is a partial isometry if and only if S is a partial isometry.
Additionally, if A = S@ A where S is upper triangular partial isometry then the
spectrum of S is in D. The research also considered the relationship between
partial isometries and their adjoints. It was established that S = ST and the
result also holds for unitary and composition operators on H? in open unit disk
that have orthogonal power [26]. In the research it was established that if f is a
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non-automorphic symbol with orthogonal power then the essential spectrum of
Ty is equal to || Ty || U. Based on this finding, it was established in [18] that it
is possible to obtain the spectrum §(7%) of Ty. Furthermore, it was established
that 0(T}) = r.(Tp)UU{(T (0)) : k = 1,2, ...}U{1}. Koldobsky [22] researched
on isometries in the Banach space X. In the investigation, it was established
that operators for X into itself that preserve orthogonality are isometries that
scalar multiples. In the research it further proved that if £ € D(z,y) and
A\, B € R then z + Ay L Az + By iff 2*(\x + By) = 0 Vo € T(x + \y). Further
an investigation was extended to a line segment and it was established that
x+E&y L yon a closed interval in R if || z + &y ||=| = +ny || V€ € [n, M] CR.

2 Preliminaries

We outline some preliminary concepts are useful in this study. We give them
under this section for ease of understanding of the work.

Definition 2.1 ( [16]) Consider X and Y to be normed spaces. An orthog-
onal isometry T : X — Y is a map such that for all x,y € X, x L y implies

T(x) L T(y), where (z,y) = 0 in inner product spaces and for all x € X,
1T ()| = |-

Definition 2.2 (/28/) The spectrum o(A) = {\ € C : X[ — A ¢ A™'},
where A is an operatorA=' is the set of all invertible element and I is the
multiplicative identity.

3 Literature review

We discuss literature on orthogonal isometries in this work. We consider vari-
ous studies, their relevance and critical contributions to this study. The work
of [36] researched on tuples of commuting partial isometries. In the investiga-
tion a link was established between d-tuple of operators in a Hilbert space and
the point spectrum and the approximate point spectrum. In the research the
spectral properties for single variable partial operators were also researched
on. It was established that the approximate point spectrum in contained in
S1 as seen in the next theorem.

Theorem 3.1 Let S = (S1,...,S,) € B(H)"™ be a joint (m;(ry,...,r,)-
partial isometry of n-tuples such that N(S™) is a reducing subspace for each
Si(1 < i < n). Then §4p(S) C A(S')" U [0] where [0] = {(B1,.... Bn € C" :
H<i<n)Br = 0}

It was further established that if S = (54, ..., S,,) has eigenvalues 5 = (34, ..., 5y
and v = (71, ..,7) such that 3,y 877 # 1 are orthogonal. This result
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was extended to norm convergency of || (S; — 5;)x., and || (S; —¥i)Ym || to zero
and approximate point spectrum and established that if those conditions are
satisfied then (x,,,y,) — 0 as (m — o0). The investigation was extended to
invertible tuples. In the research it was established that [0] is not contained in
0ap(S). Further if B = (51, ..., Bn € dap(T), then 1 € 0gp(X1<i<p, 5iT; and finally
if 8 = (B1,....0, € 6,(T), then 1 € 6,(>1<;<, BiTi- In there investigation,
they established conditions for an operator to preserve orthogonality given
that there are distinct eigenvalues. They established orthogonality of diagonal
Jordan block that corresponds to certain distinct eigenvalues. Additionally, it
was established that if S € B(H) and H is non empty then the spectrum of
S is contained in the topological boundary (7°) or the spectrum of S is in the
closure of the unit disc (ﬁ) The orthogonality of generalized eigenvector was
summarized by the following theorem.

Theorem 3.2 ([46], Theorem 5.3) Suppose A1 and Ao distinct elements of
T. Suppose S € B(M) and k; € Vs.», for i=1,2. Then the following holds:

(i). Re(S™xy, S™xy) = 0Vn € Z, provided \y = —Xy and || S™(k1 + ks ||? is a

polynomial in n;

(i1). (S™x1,S8"xe) = OVn € Z, provided \y = —\y and there exists (e1,€2) € U
such that || S™(eky + ko) ||* is a polynomial in n for i =1,2;

(1ii). (S"xy,S"xy) = OVn € Z, provided \y = —Xy and || S™(ky + ko) ||? is a
polynomial in n.

The research was based on the fact that if 7" is a Jordan block, then Lg(z) is
a linear span, then 0(Sp,(;)) = y and in this case y is eigenvalue of S. In the
our investigation we will extend the research and consider the link between
spectral properties of the direct sum of a finite number of Jordan blocks and
further consider the infinite number of Jordan blocks. We will also consider
S™ and its direct sum of both finite and infinite number of Jordan blocks of
isometries.

In [3], the authors established the link between an isometry in B(H) and shift
operators in W*-algebra. In the research it was established that if y is an
isometry and ¢ and ¢ are mutually orthogonal and commute with y and if
&+ ¢ = 1, then &yé and (yC are unitary shift and unitary in W*-algebra
respectively. In the investigation it was established that {y& and y share the
orthogonal shift spectrum. Additionally, a p-shift sequence spectrum of y
was developed with the initial projection. It was further established that if
y is a unilateral shift then there is orthogonal shift spectrum of y with total
summation 1.

In [44], the author researched on the link between the intersection of I'; = {x €
C :| X |=y} and the 6(5). In the research they established that if I'; N d(S)
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where S is a Lamperti operator, then the spectral projection belongs to d7(S).
It was further established that if S and S’ are Lampert operators then or(S)
is a band projection. In our research we established S @ S" also has a band
projection. Further we established that S™ : n € A also has a projection band
in 5T(Sn)

The study of [37] investigated on properties of quasi-isometries. In the research
it was established that if S is quasi-isometry, then the approximate point
spectrum is contained in St, further if £ € §, € (S*), then ¢ € 4, € (9),
€ € a € (S, then £ € a € (S) and finally concluded that eigenspace of
non-zero eigenvalues of S are orthogonal. The following theorem provided a
wide range of properties of quasi-isometries that establishes the link between
approximated point spectrum, the spectrum and orthogonality of mutually
orthogonal quasi-isometries.

Theorem 3.3 Suppose S is quasi-isometry. Then
(i). 8ap(S) ~ 0 is a subset of S*;
(ii). B € 6(S*) whenever 3 € §(S*);
(iii). B € 84p(S*) whenever B € 8,,(S*);

(iv). the eigen space corresponds to distinct non-zero eigenvalues of S are
mutually orthogonal;

(v). isolated points of 6(S) are eigenvalues of S.

In our work, it is interesting to investigate properties of quasi-isometries under
different technical approaches which includes direct sum and power bounded
operators. We also investigated spectral properties of UP in S'. In [42], the
researchers extended the research on partial isometries. In the research a link
between the spectrum for decomposable regular operator in a Banach space
and the closed disk was established. The link was further extended to spectral
radius and power bounded operators S™ Vn € N The research was further ex-
tended to both left and right decomposable regular operators and established
that the point spectrum and the spectrum of this partial isometries do not
share any element with the D. It was further established that if S; and S are
partial isometries and ||S; — S| < 1 then §(S;) = §(S;) = D.

The investigation on the orthogonality of N(S;) and the inverse Sy of S; was
established. In the investigation it was established that if N(S;) # 0 then
N(S1) L S3(X) which implies both ways that || I — 5152 ||= 1.

In this study it is interesting to investigate power isometries. We have also
investigated the spectral properties of the direct sun of finite number of partial
isometries and also the direct sum of a partial isometry with its adjoint. We
also investigated the properties of direct sum of convergent sequence under
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the norms and in the direct sum of a finite number of operators and there
point spectrum and the approximate point spectrum of those operators under
review.

Many authors researched on isometries and established that an isometry is a
partial isometry if there is a projection onto S € B(X) of norm 1. The link
between non-zero partial isometry and contractive inverse. In the research it
was established the norms of the two are equal and the two norms are gen-
erally equal to 1. The spectral properties of the two operators were further
investigated. In the research it was established that if T is the contractive
generalized inverse of S, in the closed unit disc D then §(7) C o(D).
Researchers have worked on the spectral properties of (A, m)-isometries and
established conditions that ensures that (A, m)-isometries are N-supercyclic
and (A, m)-isometries not to be N-supercyclic. In the investigation it was
established that spectrum of (A, m)-isometries if A # 0 intersects S'. Further-
more it was established that if T" is a compact subset of a complex space and
T NID # () then for a finite dimensional H and S;A € B(H), and if A > 0
with S then 0(S) = T. Furthermore it was established that power bounded
isometries are not supercyclic.

The investigation was further directed to the relationship between the approx-
imate spectrum of A and S € B(H) and it was established that if 0 is not a
member of d,,(A) then for an (A, m)-isometry S can never be supercyclic. The
research further considered the point spectrum and it was established that if
0 is not in the point spectrum then ||AS*|| < M for all integers k > 0 and
AS* — 0 as k — oo. Conditions for an isometry not to be N-supercyclic were
also investigated. Fore instance it was established that the operator satisfies
the following properties cannot be supercyclic.

Theorem 3.4 If S € B(H) is an (A, m)-isometry with dim (Hker(Ag)) >
N for some N > 1, then S is not N -supercyclic.

In our research it has been interesting to establish that N-supercyclicity does
not exist in the direct sum of S; € B(H) by investigating the point spectrum
of direct sum of the S;. Further we also investigated the point spectrum
of (@?:1A@;¢_1 s)- We extended our investigation to the direct sum of infinite
number of bounded linear operators. In [7] utilizing the fact that positive
operators with the spectrum §(S5) and given that the norm of S is in the
spectrum of S formulated the orthogonality conditions as summarized in the
lemma below:

Lemma 3.5 Suppose that | T ||=1=| S || with T,S € B(H,K). Then
T Lp S iff VB € C the operator (14 | 8 |*)I — (T + BS)*(T + 3S) is positive
and not invertible.

An investigation was further extended to commuting normal operators and it
was established that §(7’,S) is not contained in {(v,z) € C x R :| v |* +2% =
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1,z > 0}. Further research was done on column orthogonal operators. It
a set of operators is column orthogonal if its finite subsets are also column
orthogonal.

The work of [23] researched on approximate preservation of orthogonality. In
the investigation it was established that for reflexive Banach spaces X, if &, «
are smooth points in X and J(§) = {w} and J(a) = {#} with mutually
orthogonal elements w, 3, then for 0 < e < % then a hyperspace contained in
&5 N ats does not exist. Further it was established that for normed linear
spaces X, Y if S € B(X,Y) preserves e-orthogonality at each point £ € XV0 <
€ <1,then Sis1—1.

More work by [45] researched on approximation by partial isometries. In the
investigation they established that if A and B are normal operators then norm
is preserved as seen in the theorem below.

Theorem 3.6 Let A and B be normal operators then the following inequal-
ity holds: || A — B ||> supinfyesayesm) | 2 — v |-
Furthermore for all S and Pg = (5*5)2 and S which is a 2 x 2 matrix with S in
a12 and S* in ayy position and zero elsewhere, then 6(S) D {£4 : 8 € 6(Ps)}
and finally, for any arbitrary operator and a partial isometry S || A — S ||>
min{B,| B — 1 |}V8 € 8((A*A)2) In [32], the authors established that for
self-adjoint operators S € B(H), 6(S) C R and the eigenvector associated
with every unique eigenvalues of S admit orthogonality. In our investigation
we established the direct sum of such operators also preserve orthogonality
between the eigenvector and the distinct eigenvalues. On partial isometries,
[1] researched on partial A-isometric and left polynomially partial isometry.
In the investigation, it was established that if S € B(H) is left p-partial
isometry such that the kernel of p(S) is invariant under T', ker(p(S)) C ker
(S*T'S) and ran(Ap(S)) C ran(p(S*)). if 0 is not in approximate spectrum
of T', then 6,,(S) € 0D U R(p) in particular 6,(S) C 0D U R(p), further for
B € 84p(S*) \ R(P) whenever 3 € 0,,(S) \ R(p), B € 6,(5*) \ R(p) whenever
B € §,(5) \ R(p) and finally if p is a monomial, then the eigenspaces of S
corresponding to eigenvalues are mutually orthogonal in (H, || . ||7).

4 Research methodology

Theorem 4.1 (Closed Graph Theorem)[15] It states that if the graph
of an operator T is closed then T is bounded and continuous.

This theorem is a useful tool in functional analysis, the Closed Graph Theorem
connects the topological characteristics of linear operators with their algebraic
structure. If the graph of a projection operator in a Hilbert space (a partic-
ular kind of Banach space) is closed, then the boundedness of the projection
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can be deduced. It guarantees that linear operators between Banach spaces
are continuous given appropriate conditions (closed graph), making study and
implementation of such operators easier in a variety of academic and physical
settings. The Closed Graph Theorem can be used to prove the boundedness
of operators that are not initially known to be continuous in real-world ap-
plications. This is very helpful for different applications in quantum physics,
differential equations, and functional analysis.

Theorem 4.2 (Hartwig-Katz Theorem [}6]) Let U and V be n x n EP
matrices. The following conditions are equivalent:
(i). Let U and V.
(ii). R(UV) = R(U)N R(V) and RS(UV) = RS(U) N RS(V), where RS
means row space.
(#ii). Ran(UV) C Ran(U) and RS(UV') C Ran(U).

Theorem 4.3 (Open Mapping Theorem [37]) Suppose that A and B
are Banach spaces and J : A — B a continuous linear operator. If J is
surjective, then J is an open map, that is, for every open set F' C A, the set

J(F) is open in B.

Theorem 4.4 (Inverse Mapping Theorem)[]] States that every con-
tinuously differentiable operator is closed and bounded.

It is a fundamental concept in multivariable calculus, the Inverse Mapping
Theorem sheds light on the local invertibility of differentiable functions. The
inverse function’s existence and differentiability are made possible by the re-
quirement that the Jacobian be invertible, which guarantees the function’s
good behaviour close to the point of interest. This theorem helps solve chal-
lenging mathematical puzzles in a variety of academic fields and expands our
knowledge of the local structure of functions.

5 Technical Approaches

Tensor product: This is a technical approach that is useful in tensor analysis
of the operators. We consider TP of EOs and check the underlying structures
whether they are well defined and if they possess the properties of operators.
Then NR and Sp are characterized for the TP of these operators.

Direct sum decomposition: This is a technical approach that is useful
in analysis of matricial operators. We consider DSD of EOs and check the
underlying structures whether they are well defined and if they possess the
properties of matricial operators. Then Sp are characterized for the DSD of
these matricial operators.
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6 Main results

In this section, we investigate spectral properties of orthogonal isometries. We
carry out our investigation under different technical approaches. We begin by
providing the necessary condition that guarantee (A; @ ... ® A,, m)—isometry.

Proposition 6.1 Let A; € B(H) i = 1,2,...,n and A; # 0, then the spec-
trum of (A1 @ ... ® A, m)—isometry intersects the unit circle.

Proof. Since (A; @ ... ® A,,m) is an (A; @ ...  A,) -isometry where A;
are A;-covariance of T;. Suppose T} @ ... ® T, is an A; & ... ® A,-isometry
such that §(T} @ ... ® T,,) N 9D = ¢. We show that (A; & ... ® A,) is
a null operator. Now H® ... d H = (H® ... @ H)1 + (H® ... ® H),,
i®.oT,=MTe.oT h+(T1®.oT,) withT1®...0T,) = (1.8
Tn) |(H€B.,.®H)1+(HEB...69H)2 such that 51 = 5(T1 D...D Tn)l = 5(T1 D... @Tn) ND
and 9y = (TN @ ... D Ty) = (11 ® ... ®T,) N D°. Let us show that
(A1 ®...0A) |(mo..om,)= 0. Using that (H, @ ... ® H,), is an invariant sub-
space of (T1®...®T,) and (T1®...®T,) is (A1®...® A, )— isometry then we have
(TIEB@Tn)l is (Pl@@Pn)(Hl@@Hn)l (Al@@An) ‘(Hl@---@Hn)l —isometry
and with spectral radius less than 1. Since §(T} @ ... @ T,,); C D. Hence
(T®..oT,)"(h+...+hy)1 — 0for (hy+...+h,)1 € (Hi®...® H,);. Thus
for any (h1 + ... + hp)1 € (H1 & ... ® H,), we have that (A & ... & A,)(hy +
it b)), (hi+ o4+ hy) = (A1 ... AT D ... & T,)™(hy + ... + hy), (T B
e ®T)" (et h) = (A1 @A) (TN D...aT) Y (h+...+hy), (T1 &
@) (hi+ ...+ hy)) = 0as m — oo. Thus (A1 & ... @A) |(my0..0m,),= 0.
Further, since 6(Ty & ... ® T,,) N 50, then (17 & ... & T),)2 is invertible and

(PL® ... 0 P)me.ony) (A @ ... ® Ay) |(mo..oH,), — Is an isometry hence
(A @ .. @A) (b + ..+ ), (hy + ... +Tp)) = 0.

We now establish the link between compact subsets and the spectral properties
of (T & ... T,) that is (A; & ... ® A,,)—isometry.

Lemma 6.2 Let K; be a compact subset of C; such that (K1 & ... ® K,,) N
(D1 @ ... ®D,) # ¢ then there exists H; and T;, A; € B(H), with A; > 0
such that (Ty ® ... & T,) is (A1 @ ... ® A,)—isometry with §(TY & ... ®T,) =
(K1® .0 K,).

Proof. Let (H @ ...® H,) = lb(N®C)1 @ ... ® LN & C),. Let A be a
222 matrix with a; > 0 in the second row and second column position, since
(K1® .0 K,)NO(D; @ ... ®D,) # ¢, let T; be a linear operator an H as T;
a 2x2 matrix with (D; @ ... ® D,,); is the first row first column position and
(A @ ... ® \,); in the second row and second column position where (A & ... ®
)i € (K1®..0K,)N0(D1&...eD,) and (D1®...dD,,)((z14...+xn)1, (x1+
et T, ) = (Bt Bz + a1, (Bi 4+ BT+ F 20, )
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with {(B1 + ... + Bn)in :n € N} = (K1®...K,,);, then we get (11 +...+T},) is an
(A1®...® A,)—isometry and 6(T1®...8T,) = 6(D1®...& D) UM+ ...+ A, =
K &.. oK,

Lemma 6.3 Suppose A;,T; € B(H;) such that (T1 & ... T,) is (A1 & ...
A,)—isometry and (0,0, ...,0) to not in 0,(T1&®...T,), then there exists M > 0
such that || (A1 @ ... ® A)(T1 @ ... @ T,)* ||< M, for all positive integer k.

Proof. If (A1®...®A,) isan (A;®...®A,,)—isometry. Then || (4;®...0A,)(T1®
@) (2 + ot x) =] (A1 B A IS (A ..o A)|[(z1+ ... +2)||-
Therefore, || (A1 @ ... ® A)(T1 & ... ® T,,)* ||< M, for all positive integer k.

Theorem 6.4 Let A;, T; € B(H;) such that (T} @& ... & T,) is (A1 & ... ®
A,)—isometry and (0,0,...,0) is not in 6,(T1 & ... ® T,), then for nonzero
4+ tz, € (H®..0H,),(A4®..0A)T1d..0T) (z1+... +3,) —
0,0, ..., 0).

Proof. Suppose z1 + ... + &, € (H; & ... ® H,,) is anonzero vector, since
(0,0,...,0) is not in 6,(7y & ... ® T},), then we have || (A1 & ... ® A4,)(T1 &
T+ o+ ) = (AL @ AY)(zy + .+ x) ||# 0. Therefore,
| (A1®...®A) (T D... BT (x1+...4+x,) || = (A1B..A,) (21 +...4+2,) ||# 0
as k — oo. Hence, (A1 ... 8 A,)(Th1 @ ... T,) — 0 as k — oo for all nonzero
1+ ...+x, €(H &...0 H,).

We now provide conditions for the direct sum of an isometry and its adjoint
to be an isometry.

Proposition 6.5 Let T be isometric. Suppose n is a positive integer such
that n > ng, N(T*)" = N(T*)" then S = T & T* is isometric. Moreover,
a+a € 0(S*) whenever a+a € 6(9).

Proof. Let a, v € dp(T' @ T*). Suppose that « =0anda =0.If0 € C\ép(T®
T*)*, then (TOT*)**(THT*)* = (THT*) (TOT™), (THT*)(THT*)* = (THT*)
or (TOT*)**(T®T*) = (THT*)*. Now suppose o and @ are all nonzero, put x
be such that Tr = axr and y be such that T*y = @y, then since (T'®T*)**(T @
T*)? = (TeT*)*(TOT*), then a+a(TOT*)(z+y) = (a+a)*(THT*)*(z+y).
Now | a+@ |= 1 and therefore (T ®T*)* — (a+a)(I ) (T®T*)*)(z+y) = 0.
To show that a + @ € §(S*), we need to show that (T ®T*)*)(x+y) # 0. Sup-
pose ((T'@T*) =0, then 0 = (z+y, (THT*) (x+y)) = (TET*)x+y,z+y) =
a+a(x +y,r 4+ y) and hence a + @ = 0 since = + y is nonzero. This is a
contradiction since |o +a| = 1.

We extend the above properties to the approximate spectral properties.
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Proposition 6.6 Let T be isometric. Suppose n is a positive integer such
that n > ng, N(T*)" = N(T*)" then S = T @& T* is isometric. Moreover,
QO + @ € 04y (S*) whenever o +a € §4p(.5).

Proof. Let a +@ € 64p(T @ T™). Suppose o + @ = 0 then it follows that
0 € 04p(T & T*)*. Now suppose o + @ # 0, and if x, + y, is a unit vector
such that (T & T*) — (o« + @)(I ® I)(z, + yn) — 0 then —(a + @)*(T ®
Ty (wn+yn) — (@ + Q)T OT*) ) (wn+yn) = (TOT)2(T O T*)*(wn +yn) +
(a+ @) (g, +yn) — (THTH(T & T*)(xy + yn) — (@ + @) (2, + yn) — 0 as
n—ooor ((a+a@)(ToT) — I ®I)(x, + yn) — 0. Now since (o + @) =
lim((THT*)(xn+Yn), Tntyn) = lim{(x,+y,), (THT*)*(z,+y,)) and (a+a@) #
0,(T&T*)(x,+yn) does not converge to zero. Now choose (T'®T™*)* (2, +Yn )k
be a subsequence of (T'@&T™)(x,+y,) such that || (T'&T*)(x, +yn)k ||> M for
some positive number M. Set (zx +wy) = H((TT gjﬂ*))*(én;yynn))kk”, then (zx +wy) is a
sequence of unit vectors such that (a+@)(T@T*)—(II)(zk+wg)(zx+wg) — 0
and | a+@) |= 1.

Lemma 6.7 Let T be isometric. Suppose n is a positive integer such that
n > ng, N(IT*)" = N(T*)" then S =T & T* is isometric. Moreover, the
eigenspace corresponding to distinct nonzero eigenvalue of S are mutually or-
thogonal.

Proof. Let o +@ and 3+ 3 be distinct nonzero eigenvalues of T @ T*. Suppose
(ToT)(w+y) = (a+a)(z+y) and (TST*)(w+z) = (6 + B)(w + z) then
0= ((T@Ti)z(x—f—y), (T@iT*)(vaz)) —(TeT*)(x+vy), (T@T*)(w—i;z)) =
(a+@) (B + B)((a+@) (B + B)—1)(z+y, w+z). Since (a+a@) # 0 and (S+5) # 0

then (a+a)(B+ B) # 0 and | B+ B |= 1. Additionally, a +@ # [+ 3. There-
fore, o + @ # ﬁ or (a+a)(B + B) # 0. Hence, (z + y,w + z) = 0.

Next, we characterize conditions under which the direct sum of two partial
isometries is an isometry.

Lemma 6.8 Let A; € M,,i = 1,2 be partial isometries and M; C H,1 =
1,2,3,4. Suppose My & My and M3 @& My are orthogonal and Ay & As : My &
M2 — M3 D .]\447 then (5(141 D AQ) CcD.

Proof. Suppose A;x; = N\jz; and || 1 +x2 ||, then | Ay + Ao |=|| (A1 & As) (21 +
x9) <] (A1 @ Aa) |||l (z1 + x2) ||[< 1. Since A; & As preserves the partial
isometry properties then || (A; & As) ||= 1. Thus 0(A; & Asz) = (A1) U(As).
Since A; are partial isometries, then §(A;) € D~ and §(As) € D, thus
0(A1)Ud(Az) D™

We now establish the link between partial isometries and the direct sum of
upper triangular partial isometries and unitary operators.
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Theorem 6.9 Let A; € M,,i = 1,2 be partial isometries and A =T & U,
and Ay @ Ay : My & My — My @® My, then §(T;) C D if T; are upper triangular
partial isometries.

Proof. Since A; € M, are partial isometries and §(7) C D and U is upper
triangular with §(U) C 7T, then since A = T & U, then A; are contractions.
Additionally, since A; are contractions then A; & A, is also a contraction hence
§(A; @ Ay) = §(A;) US(Ay). But if A; are contractions then 6(A;) C D and
§(Ag) C D, therefore 6(A; & Ay) = §(A;) Ud(Az) C D.

We now extend our investigations to power isometries.

Theorem 6.10 Let A; € M, be a partial isometry, suppose that A; & Ay
has orthogonal subspaces in the initial and final spaces, then (A; @ As) — 0 if
A; are completely non unitary.

Proof. Suppose A; are partial isometries and suppose that the initial and
final subspaces of A; & Ay are orthogonal, then A; @& A, is a partial isom-
etry. Since the direct sum preserves Jordan canonical form properties, then
(Al D A2)n — 0. Therefore, 5(141 @D AQ) = (5(141) U (5(142) CD.

We now investigate the spectral properties of the product of two projections.
Corollary 6.11 Let Py, P, € M, be two projections, then 6(P,P;) C D.

Proof. Let P, and P, be orthogonal projections, then P, P, is a partial isom-
etry. Now, if P; and P, are projections, then §(P;) C D and also 6(FP) C D.
Therefore, 6(P,Py) = §(P1)0(P) C D.

We now establish conditions that preserves isometry properties between and
isometry and its adjoint.

Proposition 6.12 Let T be a surjective isometry, then §(TT*) C D.

Proof. Let T be a surjective isometry, then TT* = T*T = I. Now 0(TT*) =
(T*T) = 6(I). Since 6(T)) € D and 6(T™*) C D, then 6(T)6(1T*) C D. Also
§(T*)6(T) C D. Therefore, the spectrum of T*T lies in the complex unit plane.

We now provided conditions for the square of an isometry to be an isometry.

Proposition 6.13 Let ' € B(H) be an isometry such that T*T = TT*,
then 6(T%) C T or 6(T?%) =D.

Proof. Let T € B(H) be such that T*T = TT*, then T? is an isometry, hence
V|8 |< 1, T*— (3 isan upper semi-Fredholm. Suppose that (7?%)7! ex-
ists, then ind7T? = 0, thus by continuity of index, ind(7? — 8) = 0 V. Thus,
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(T? — B)~! exists V | B |< 1. Hence, §(T%) C T. Suppose (T?)~! does not
exist then ind(T?) = —codimR(T?)~! < 0 and by continuity of the index then
ind(7T?% — 3) <0,V | B |< 1. So, 6(T?) 2 D hence §(T?) = D.

We now provide conditions for the square of an isometry to be an isometry
under direct sum.

Lemma 6.14 Let T,S € B(H) be orthogonal isometries, then for T* & S*
and z+y € Hi®H,, then either t+y € N R(T*®S?)" and § 2052y (z+y) C T
or x +y is not in NP_ R(T* & S*)" and then d(r2ps2)(x +y) = D.

Proof. Let My C Hy and Let My C Hy, then if My & My = N2, R(T?* @ S?), let
z+y € My & Ms, then 622y (2 +y) C 6(T°BS?) |(myems)S T Now suppose
x+y is not in M, @& My, then z+y is not in NS R((T?®S*—(A+8))")VA, 8 € D.
Thus (A + 8) € dr2as2)(x + y)VA, f € D. Therefore d(p2ss2)(z +y) = D.

We now establish the link between the spectrum, local spectrum and approx-
imate spectrum.

Theorem 6.15 Let T, S € B(H) be orthogonal invertible isometries. Then
5(T2 S 52) = 5ZOC(T2 @ SQ) = 5ap(T2 ©® 52) cT.

Proof. Since isometries have single value extension property, then &,.(7? @
S%) C 0,y(T? & S?). Since (T? @ S?) is m-isometry, then it is decomposible.
Thus, 6(T? & S?) = G10e(T? & S?). Thus 0je(T? & S?) C §ap(T* & S?*) C T.

7 Open Problems

[sometries are special mappings with a property of distance preservation. This
property makes them unique and interesting in-terms of characterization. How-
ever, it is very difficult to do characterizations of properties of isometires in
a general Banach space setting due to the intricate underlying structures in
Banach spaces. In this paper, we have characterized spectral properties of
isometries and in particular when they are orthogonal. We have shown that
orthogonal isometries preserve distance even when they are subjected to direct
sum decomposition. This leaves two open problems that should be tackled.
Problem 1: Can one develop an efficient algorithm for analyzing the distance
preservation conditions for orthogonal isometries as characterized in this work?
Problem 2: Do orthogonal isometries preserve distance even when they are
subjected to tensor products?
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