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Abstract

Let R be a ring, P a prime ideal of R and h : R → R a homoderiva-
tion of R. In this paper, we proved that R/P is commutative integral
domain in the ring R satisfying some algebraic identities.
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1 Introduction

The derivations and their generalizations play major role in mathematics,
economics, quantum physics and biology such as chemotheraphy. Many re-
searchers have presented derivations of various algebraic structures such as
rings, near rings. The commutativity of prime or semiprime rings with deriva-
tion was first discussed by E. C. Posner [6]. In this paper, Posner describes
the definition of derivation in any ring as follows: An additive mapping d on R
is a derivation if d(xy) = d(x)y + xd(y), for all x, y ∈ R and proved that if a
nonzero derivation d centralizng on a prime ring R, then R becomes commuta-
tive. Over the last several years, a number of authors studied commutativity
theorems for prime or semiprime rings admitting automorphisms or deriva-
tions on appropriate subsets of R. Also, they investigated the commutativity
using the concept of different derivation definitions. Because of that the corre-
lation between derivations and the algebraic structures has become an exciting
subject in the the last years.
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Inspired by previous studies, the commutativity of rings has been discussed
in more expansive way. In recent years, the effects of these conditions on the
derivation of prime and semiprime ideals have begun to be examined. An
ideal P in a ring R is said to be prime if P ̸= R and for any ideals A,B in R,
AB ⊆ P then A ⊆ P or B ⊆ P. A ring R is said to be a prime ring if the zero
ideal is a prime ideal (that is, if I, J are ideals such that IJ = 0, then I = 0 or
J = 0). A ring R is semiprime if and only if R has no nonzero nilpotent ideals.
Equivently, a ring R is said to be prime if xRy = (0) implies that either x = 0
or y = 0 and semiprime if xRx = (0).implies that x = 0, where x, y ∈ R. Every
prime ring is semiprime since 0 is a prime ideal. Also, we know that R/P is a
prime ring where P is prime ideal of R. The relationships among prime ideals,
prime rings and semiprime rings are analogous to the relationships between
mappings and commutativity. The consideration of whether the ring R is
prime or semiprime has been omitted, and instead the focus has shifted to
analyzing the beheviour of a factor ring R/P, where P is prime ideal of R.

In 2000, El Sofy [12] defined a homoderivation on R as an additive mapping
H : R → R satisfying H(xy) = H(x)H(y) +H(x)y + xH(y) for all x, y ∈ R.
An example of such mapping is to let H(x) = f(x)− x, for all x, y ∈ R where
f is an endomorphism on R. It is clear that a homoderivation H is also a
derivation if H(x)H(y) =0 for all x, y ∈ R. In this case, H(x)RH(y) = 0 for
all x, y ∈ R. Hence if R is a prime ring, then the only additive mapping which
is both a derivation and a homoderivation is the zero mapping.

In [4], Daif and Bell proved that R is semiprime ring, I is a nonzero ideal of
R and d is a derivation of R such that d([x, y]) = ±[x, y], for all x, y ∈ I, then R
contains a nonzero central ideal. This theorem considered for homoderivations
by El Sofy in [12]. Further, Hongan [5] extended this theorem as follows: Let
R be a 2-torsion free semiprime ring and R a nonzero ideal of R and d a
derivation of R. If d([x, y])± [x, y] ∈ Z, for all x, y ∈ R, then R ⊆ Z.

There is a growing literature on strong commutativity preserving (SCP)
maps and derivations. Bell and Daif [2] first investigated the derivation of
SCP maps on the ideal of a semiprime ring. Bresar [3] generalized this work
to the Lie ideal of the ring. In [7], Ma and Xu handled this study for gener-
alized derivations. Moreover, Koç and Gölbaşı [8] have been studied for the
multiplicative generalized derivations by generalizing these conditions on the
semiprime ring. Koç Sögütcü addressed this condition for homoderivations in
semiprime rings in 2023 [9].

The commutativity of prime and semiprime rings admitting derivations
remains an active area of research. Recent approaches involve examining com-
mutativity conditions in quotient rings rather than assuming the ring is prime
(see, e.g. [1], [10], [11]).

From the above results, our aim is to explore a more general context of
differential identities involving a prime ideal by omitting the primeness as-
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sumption imposed on the ring. This approach allows us to generalize the
results obtained earlier.

2 Results

Throughout this paper, R will be a ring, P a prime ideal of R and h a homod-
erivation which is zero-power valued on R.

For any x, y ∈ R, as usual [x, y] = xy − yx and xoy = xy + yx will denote
the well-known Lie and Jordan product, respectively and make extensive use
of basic commutator identities:

[x, yz] = y[x, z] + [x, y]z
[xy, z] = [x, z]y + x[y, z]

xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z
(xy)oz = x(yoz)− [x, z]y = (xoz)y + x[y, z].

For all x, y ∈ R, we get

h([x, y]) = h(xy − yx) = h(xy)− h(yx)

= h(x)h(y) + h(x)y + xh(y)− h(y)h(x)− h(y)x− yh(x)

= [h(x), h(y)] + [h(x), y] + [x, h(y)].

Theorem 2.1 Let R be a ring, P a prime ideal of R and h a homoderivation
which is zero-power valued on R. If [h(x), h(y)] ± [x, y] ∈ P for all x, y ∈ R,
then R/P is a commutative integral domain.

Proof. By the hypothesis, we get

[h(x), h(y)]± [x, y] ∈ P for all x, y ∈ R.

Replacing y by yz in the last expression, we have

[h(x), h(y)]h(z) + h(y)[h(x), h(z)] + [h(x), h(y)]z + h(y)[h(x), z]
+[h(x), y]h(z) + y[h(x), h(z)]± [x, y]z ± y[x, z] ∈ P.

Using the hypothesis, we get

[h(x), h(y)]h(z) + h(y)[h(x), h(z)] + +h(y)[h(x), z] + [h(x), y]h(z) ∈ P.

Again using our hypothesis, we can write the last expressino such as

([x, y] + p1)h(z) + h(y)([x, z] + p2) + h(y)[h(x), z]

+ [h(x), y]h(z) ∈ P, for any p1, p2 ∈ P.
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That is

[x, y]h(z) + h(y)[x, z] + h(y)[h(x), z] + [h(x), y]h(z) ∈ P

and so

[x+ h(x), y]h(z) + h(y)[h(x) + x, z] ∈ P.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing x by x−h(x)+h2(x)+ ...+(−1)n−1hn−1(x)
in this expression, we get

[x, y]h(z) + h(y)[x, z] ∈ P.

Replacing z by x in the last expression, we get

[x, y]h(x) ∈ P for all x, y ∈ R. (1)

Replacing y by yz in the above expression, we get

[x, y]zh(x) ∈ P, for all x, y, z ∈ R.

Since P is prime ideal, we have

[x, y] ∈ P or h(x) ∈ P, for all x, y ∈ R.

Let L = {x ∈ R | h(x) ∈ P} and K = {x ∈ R | [x, y] ∈ P, for all y ∈ R}.
Clearly each of L and K is additive subgroup of R such that R = L∪K. But,
a group can not be the set-theoretic union of two proper subgroups. Hence
L = R or K = R . In the former case, h(x) ∈ P for all x ∈ R. Using this in our
hypothesis, we arrive at [x, y] ∈ P for all x, y ∈ R. So we must have [x, y] ∈ P
for all x, y ∈ R for any cases. Hence we get xy − yx ∈ P for all x, y ∈ R. This
implies that (x+ P )(y + P ) = (y + P )(x+ P ) for all x, y ∈ R. We have R/P
is a commutative integral domain. This completes the proof.

Theorem 2.2 Let R be a ring, P a prime ideal of R and h a homoderivation
which is zero-power valued on R.If any of the following expressions satisfies
for all x, y ∈ R,
i) xh(y) + xy ∈ P,
ii) xh(y) + yx ∈ P,
iii) xh(y)± x ◦ y ∈ P,
iv) [h(x), y]± xy ∈ P,
v) [h(x), y]± yx ∈ P .
then R/P is a commutative integral domain.
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Proof. i) By the hypothesis, we get

xh(y) + xy ∈ P, for all x, y ∈ R.

That is,
x(h(y) + y) ∈ P, for all x, y ∈ R.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing y by y−h(y)+h2(y)+ ...+(−1)n−1hn−1(y)
in this expression, we obtain that

xy ∈ P, for all x, y ∈ R.

That is, yx ∈ P for all x, y ∈ R. We conclude that xy−yx ∈ P for all x, y ∈ R.
We conclude that R/P is a commutative integral domain. We complete the
proof.

ii) We get
xh(y) + yx ∈ P, for all x, y ∈ R.

Replacing y by xy, y ∈ R in this expression, we have

xh(x)h(y) + xh(x)y + x2h(y) + xyx ∈ P.

Using the hypothesis, we arrive at

xh(x)(h(y) + y) ∈ P.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing y by y−h(y)+h2(y)+ ...+(−1)n−1hn−1(y)
in this expression, we obtain that

xh(x)y ∈ P, for all x, y ∈ R.

Taking y by rxh(x), r ∈ R in the last expression, we have

xh(x)rxh(x) ∈ P, for all x, y, r ∈ R.

By the primeness of P, we get

xh(x) ∈ P, for all x, y ∈ R. (2)

By the hypothesis, we get

xh(x) + x2 ∈ P, for all x ∈ R.

Using expression (2), we obtain that

x2 ∈ P, for all x ∈ R. (3)
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Replacing x by x+ y in this expression, we see that

x ◦ y ∈ P, for all x, y ∈ R. (4)

Replacing y by yz, z ∈ R in the above expression and using this, we get

[x, y]z ∈ P, for all x, y, z ∈ R.

Replacing z by z[x, y] in this expression, we have

[x, y]R[x, y] ∈ P, for all x, y ∈ R.

Since P is prime ideal, we get

[x, y] ∈ P, for all x, y ∈ R.

We conclude that R/P is a commutative integral domain. We complete the
proof.

iii) By the hypothesis, we get

xh(y)± x ◦ y ∈ P.

Replacing y by yx in this expression, we get

xh(y)h(x) + xh(y)x+ xyh(x)± (x ◦ y)x ∈ P.

Using the hypothesis, we get

xh(y)h(x) + xyh(x) ∈ P.

That is,
x(h(y) + y)h(x) ∈ P.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing y by y−h(y)+h2(y)+ ...+(−1)n−1hn−1(y)
in this expression, we obtain that

xyh(x) ∈ P, for all x, y ∈ R.

Primenessly of P, we have

x ∈ P or h(x) ∈ P, for all x ∈ R.

Let L = {x ∈ R | x ∈ P } and K = {x ∈ R | h(x) ∈ P}. Clearly each of L
and K is additive subgroup of R such that R = L ∪K. But, a group can not
be the set-theoretic union of two proper subgroups. Hence L = R or K = R .
In the former case, x ∈ P for all x ∈ R, and so P = R.This contradicts that
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P is prime ideal of R. So, we must have K = R. Hence we get h(x) ∈ P for
all x ∈ R. Using this in our hypothesis, we conclude that x ◦ y ∈ P, for all
x, y ∈ R. Appliying the same arguments after the equation (4), we get the
required result.

iv) We get

[h(x), y]± xy ∈ P, for all x, y ∈ R.

Taking y by yx in this expression, we get

[h(x), y]x+ y[h(x), x]± xyx ∈ P.

By the hypothesis, we get

y[h(x), x] ∈ P, for all x, y ∈ R. (5)

Replacing y by [h(x), x]r, r ∈ R in this eqaution, we get

[h(x), x]r[h(x), x] ∈ P.

Since P is prime ideal, we have

[h(x), x] ∈ P, for all x ∈ R. (6)

By the hypothesis, we get

[h(x), x]± x2 ∈ P.

Using expression (6), we see that

x2 ∈ P, for all x ∈ R.

The rest of the proof is the same as expression (3). We complete the proof.

v) By the hypothesis, we get

[h(x), y]± yx ∈ P, for all x, y ∈ R.

Replacing y by xy in this expression, we have

x[h(x), y] + [h(x), x]y ± xyx ∈ P.

That is

[h(x), x]y ∈ P, for all x, y ∈ R.

The rest of the proof is the same as expression (5). We complete the proof.
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Theorem 2.3 Let R be a ring, P a prime ideal of R and h a homoderivation
which is zero-power valued on R.If any of the following expressions satisfies
for all x, y ∈ R,
i) [h (x) , y] ∈ P,
ii) h(x) ◦ y ∈ P,
iii) h([x, y])± [h(x), y] ∈ P,
iv) h(x ◦ y)± h(x) ◦ y ∈ P
then R/P is a commutative integral domain.

Proof. i) By the hypothesis, we have

[h(x), y] ∈ P, for all x, y ∈ R.

Replacing x by xz, z ∈ R in the last expression, we get

[h(x)h(z) + h(x)z + xh(z), y] ∈ P, for all x, y, z ∈ R.

Expanding this expression using our hypothesis, we find that

h(x)[z, y] + [x, y]h(z) ∈ P, for all x, y, z ∈ R.

Taking z by y in the last expression, we have

[x, y]h(x) ∈ P, for all x, y ∈ R.

The rest of the proof is the same as expression (1). We complete the proof.
ii) By the hypothesis, we get

h(x) ◦ y ∈ P, for all x, y ∈ R.

Replacing y by yz, z ∈ R in this expression and using this expression, we have

y[z, h(x)] ∈ P, for all x, y, z ∈ R.

Taking y by [z, h(x)]r, r ∈ R in this expression, we get

[z, h(x)]r[z, h(x)] ∈ P, for all x, z, r ∈ R.

That is,
[z, h(x)]R[z, h(x)] ⊂ P, for all x, z ∈ R.

By the primeness of P , we find that

[z, h(x)] ∈ P, for all x, z ∈ R.

By Theorem 3 (i), we conclude that R/P is a commutative integral domain.



A Note on Homoderivations in Prime Ideals 141

iii) Let assume that

h([x, y])± [h(x), y] ∈ P, for all x, y ∈ R.

This implies that

[h(x), h(y)] + [h(x), y] + [x, h(y)]± [h(x), y] ∈ P

and so
[h(x), h(y)] + [x, h(y)] ∈ P, for all x, y ∈ R.

That is
[h(x) + x, h(y)] ∈ P, for all x, y ∈ R.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing x by x−h(x)+h2(x)+ ...+(−1)n−1hn−1(x)
in this expression, we get

[x, h(y)] ∈ P, for all x, y ∈ R.

By Theorem 3 (i), we conclude that R/P is a commutative integral domain.
iv) We get

h(x ◦ y)± h(x) ◦ y ∈ P, for all x, y ∈ R.

If this expression is edited, we have

h(x) ◦ h(y) + h(x) ◦ y + x ◦ h(y)± h(x) ◦ y ∈ P.

and so
h(x) ◦ h(y) + x ◦ h(y) ∈ P.

That is
(h(x) + x) ◦ h(y) ∈ P, for all x, y ∈ R.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing x by x−h(x)+h2(x)+ ...+(−1)n−1hn−1(x)
in this expression, we obtain that

x ◦ h(y) ∈ P, for all x, y ∈ R.

By Theorem 3 (ii), we get R/P is a commutative integral domain.

Theorem 2.4 Let R be a ring, P a prime ideal of R and h a homoderivation
which is zero-power valued on R.If any of the following expressions satisfies
for all x, y ∈ R,
i) h(x)h(y)± xy ∈ P, or
ii) h (x)h(y)± yx ∈ P.
Then R/P is a commutative integral domain or h(R) ⊂ P .
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Proof. i) By the hypothesis, we get

h(x)h(y)± xy ∈ P for all x, y ∈ R.

Replacing y by yz, z ∈ R in this expression, we have

h(x)h(y)h(z) + h(x)h(y)z + h(x)yh(z)± xyz ∈ P.

Using the hypothesis, we get

h(x)h(y)h(z) + h(x)yh(z) ∈ P.

Again using our hypothesis, we can write the last expression

(xy + p1)h(z) + h(x)yh(z) ∈ P, for any p1 ∈ P

and so
xyh(z) + h(x)yh(z) ∈ P. (7)

Taking x by rx, r ∈ R in the above expression, we find that

rxyh(z) + rh(x)yh(z) + h(r)h(x)yh(z) + h(r)xyh(z) ∈ P.

Using expression (7), we get

h(r)h(x)yh(z) + h(r)xyh(z) ∈ P.

That is
h(r)(h(x) + x)yh(z) ∈ P.

Since h is zero-power valued on R, there exists an integer n > 1 such that
hn(x) = 0 for all x ∈ R. Replacing x by x−h(x)+h2(x)+ ...+(−1)n−1hn−1(x)
in this expression, we get

h(r)xyh(z) ∈ P.

Replacing r by z, z ∈ R in this expression, we get

h(z)xyh(z) ∈ P

and so
yh(z)Ryh(z) ⊂ P.

Since P is prime ideal, we have

yh(z) ∈ P, for all y, z ∈ R.

Replacing y by h(z)y in the last expression, we have

h(z)yh(z) ∈ P, for all y, z ∈ R,
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and so
h(z) ∈ P, for all z ∈ R.

Using this in our hypothesis, we see that xy ∈ P, and so [x, y] ∈ P for all
x, y ∈ R. This implies that xy−yx ∈ P, and so (x+P )(y+P ) = (y+P )(x+P )
for all x, y ∈ R. Hence we have R/P is a commutative integral domain. This
completes proof.

ii) By the hypothesis, we have

h(x)h(y)± yx ∈ P, for all x, y ∈ R.

Replacing y by yz, z ∈ R in this expression, we get

h(x)h(y)h(z) + h(x)h(y)z + h(x)yh(z)± yzx ∈ P.

We can rewrite this expression such as

h(x)h(y)h(z) + h(x)h(y)z + h(x)yh(z)± yxz ∓ yxz ± yzx ∈ P.

Using the hypothesis, we obtain that

h(x)h(y)h(z) + h(x)yh(z)∓ yxz ± yzx ∈ P.

Again using our hypothesis, we have

(yx+ p1)h(z) + h(x)yh(z)∓ yxz ± yzx ∈ P.

This implies that

yxh(z) + h(x)yh(z)∓ yxz ± yzx ∈ P. (8)

Replacing y by ry, r ∈ R in this expression, we obtain that

h(x)ryh(z) + ryxh(z)∓ ryxz ± ryzx ∈ P.

Using the expression (8) and the hypothesis, we can rewrite the last equation
such as

h(x)ryh(z)− r(h(x)yh(z) + p2) ∈ P, for any p2 ∈ P

and so
h(x)ryh(z)− rh(x)yh(z) ∈ P.

Replacing r by h(z) in the above expression, we find that

h(x)h(z)yh(z)− h(z)h(x)yh(z) ∈ P.

Using the hypothesis, we see that

(zx+ p3)yh(z)− (xz + p4)yh(z), for any p3, p4 ∈ P
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and so

[x, z]yh(z) ∈ P, for all x, y, z ∈ R.

The rest of the proof is the same as Theorem 1 (i). This completes proof.

Example. Suppose the ring R =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R
}
. Define maps

h : R → R as follows:

h

((
a b
c d

))
=

(
0 b
0 0

)
.

Let

P =

{(
a b
0 d

)∣∣∣∣ a, b, d ∈ R
}
.

It is obvious that P is not a prime ideal. Then it is easy to verify that h is a
homoderivation of R and [h(x), y] ∈ P for all x, y ∈ R. However, R/P is not
commutative.
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3 Open Problem

Our hypotheses are considered for the homoderivation on a prime ideal of the
ring. Considering all hypotheses on the ring with semiprime ideals gives more
general results. Also, if different derivations and conditions are considered on
prime or semiprime ideals of the ring, many papers on this topic turn out to
have different results.
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