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Abstract

This article presents new integral formulas based on a sin-
gle adjustable function and one or two minimally restricted
parameters. These formulas are not found in previous litera-
ture. They are notable for their simplicity and their links to
key mathematical constants and special functions.
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1 Introduction

Integral formulas play a central role in science. They are among the most useful
mathematical tools. For a comprehensive overview of the most useful of these
formulas, see the book [5]. The continued interest in discovering new integral
formulas stems from their ability to solve emerging problems in a variety of
fields. Recent developments and contributions in this area can be found in
[6, 7, 8, 9, 2, 3, 4].

In this article, we contribute to this field by establishing several new tractable
results. The integral formulas obtained depend on a single adjustable function
and one or two tuning parameters. Notably, these parameters are subject to
minimal restriction; one of them may even span the entire real line. These for-
mulas also do not appear in [5], suggesting their potential for new and diverse
practical applications. They are of particular interest due to their simplic-
ity and broad applicability in various mathematical contexts. Furthermore,
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some of these formulas are connected to fundamental mathematical constants
and functions, such as π, the Catalan constant and various special functions,
including the sine integral function and the gamma integral function.

The structure of the article is as follows: Section 2 presents two main theo-
rems. Section 3 discusses several corollaries derived from the second theorem.
Section 4 formulates an open problem. Section 5 offers concluding remarks
and perspectives on future work.

2 Two key theorems

2.1 First theorem

The first theorem provides a one-parameter integral formula that depends on
a single adjustable function. This formula always yields a result of zero. The
proof employs a fundamental change of variable approach.

Theorem 2.1 Let f : [0,+∞)2 7→ [0,+∞) be a function such that, for any
x, y > 0, we have f(x, y) = f(y, x). Suppose that, for any α ∈ R, the integral

Iα :=

∫ +∞

0

f

(
x,

1

x

)
xα log(x)

(x+ xα)2
dx

converges. Then, for any α ∈ R, we have

Iα = 0.

Proof. For any α ∈ R, performing the change of variables x = 1/y, and using
the properties of f and of the logarithmic function, we get

Iα =

∫ 0

+∞
f

(
1

y
, y

)
(1/y)α log(1/y)

[1/y + (1/y)α]2

(
− 1

y2
dy

)
= −

∫ +∞

0

f

(
y,

1

y

)
yα log(y)

(yα + y)2
dy = −Iα.

As a result, we have Iα = 0. This concludes the proof. □

Some examples of applications of this theorem are given below.

Example 1. For any x, y > 0, and β > 0, let us consider

f(x, y) :=
1

xβ + yβ
.

It is obvious that, for any x, y > 0, we have f(x, y) = f(y, x). For any
α ∈ R, Theorem 2.1 applied to this function gives∫ +∞

0

xα+β log(x)

(x2β + 1)(x+ xα)2
dx = 0.
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Example 2. For any x, y > 0, and β > 0, let us consider

f(x, y) :=
1

xβ + yβ + xβyβ
.

It is clear that, for any x, y > 0, we have f(x, y) = f(y, x). For any
α ∈ R, Theorem 2.1 applied to this function gives∫ +∞

0

xα+β log(x)

(x2β + xβ + 1)(x+ xα)2
dx = 0.

Example 3. For any x, y > 0, and β > 0, let us consider

f(x, y) := min(xβ, yβ).

It is obvious that, for any x, y > 0, we have f(x, y) = f(y, x). For any
α ∈ R, Theorem 2.1 applied to this function gives∫ +∞

0

min

(
xβ,

1

xβ

)
xα log(x)

(x+ xα)2
dx = 0.

Example 4. For any x, y > 0, let us consider

f(x, y) := arctan[min(x, y)].

It is clear that, for any x, y > 0, we have f(x, y) = f(y, x). For any
α ∈ R, Theorem 2.1 applied to this function gives∫ +∞

0

arctan

[
min

(
x,

1

x

)]
xα log(x)

(x+ xα)2
dx = 0.

Note that all of these integral formulas have the property that α belongs
to the set of real numbers without restriction, which makes them particularly
flexible and applicable.

2.2 Second theorem

The second theorem is more technical than the first. It provides a one-
parameter integral formula that depends on a single adjustable function. The
result is a simple integral that is independent of the parameter. Two different
proofs are provided.

Theorem 2.2 Let f : [0,+∞)2 7→ [0,+∞) be a function such that, for any
x, y > 0, we have f(x, y) = f(y, x). Suppose that, for any α ∈ R, the integral

Jα :=

∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx
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converges. Then, for any α ∈ R, we have

Jα =
1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx.

Proof. To demonstrate the versatility of this theorem, two proofs are pre-
sented: Proof 1 employs Theorem 2.1, while Proof 2 uses a suitable decompo-
sition of the integrand.

Proof 1: Using Theorem 2.1. For any x > 0 and α ∈ R, using standard
differentiation rules, we have

∂

∂α

[
f

(
x,

1

x

)
1

x+ xα

]
= −f

(
x,

1

x

)
xα log(x)

(x+ xα)2
.

It follows from the Leibniz integral rule and Theorem 2.1 that

∂

∂α
Jα =

∂

∂α

[∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx

]
=

∫ +∞

0

∂

∂α

[
f

(
x,

1

x

)
1

x+ xα

]
dx

= −
∫ +∞

0

f

(
x,

1

x

)
xα log(x)

(x+ xα)2
dx = 0.

As a result, for any α ∈ R, we can write

Jα = C,

where C denotes a certain constant independent of α.

In particular, taking α = 1, we find that

C = J1 =

∫ +∞

0

f

(
x,

1

x

)
1

x+ x
dx =

1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx.

Therefore, for any α ∈ R, we have

Jα =
1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx.

Proof 2: Direct approach. For any α ∈ R, performing the change of vari-
ables x = 1/y and using the property of f , we have

Jα =

∫ 0

+∞
f

(
1

y
, y

)
1

1/y + (1/y)α

(
− 1

y2
dy

)
=

∫ +∞

0

f

(
y,

1

y

)
1

y + y2−α
dy =

∫ +∞

0

f

(
y,

1

y

)
yα−1

yα + y
dy

=

∫ +∞

0

f

(
x,

1

x

)
xα−1

x+ xα
dx.
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Exploiting this new expression of Jα and factorizing, we have

2Jα = Jα + Jα =

∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx+

∫ +∞

0

f

(
x,

1

x

)
xα−1

x+ xα
dx

=

∫ +∞

0

f

(
x,

1

x

)
1 + xα−1

x(1 + xα−1)
dx =

∫ +∞

0

1

x
f

(
x,

1

x

)
dx.

We conclude that

Jα =
1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx.

This completes the proof. □

To the best of our knowledge, this integral formula is a novel addition to
the existing body of literature. It enables us to derive various new results
that would otherwise be intractable using standard methods such as finding
primitives, performing changes of variables or integrating by parts. These
features are explored in detail in the following section.

3 Corollaries

3.1 Consequences of Theorem 2.2

The corollary below uses the framework of Theorem 2.2 to present a two-
parameter integral formula involving π.

Corollary 3.1 For any α ∈ R and β > 0, we have∫ +∞

0

xβ

(x2β + 1)(x+ xα)
dx =

π

4β
.

Proof. For any x, y > 0 and β > 0, we set

f(x, y) :=
1

xβ + yβ
.

It is obvious that, for any x, y > 0, we have f(x, y) = f(y, x). Moreover, we
can write ∫ +∞

0

xβ

(x2β + 1)(x+ xα)
dx =

∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx. (1)
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It follows from Theorem 2.2 and the arctangent primitive that, for any α ∈ R,∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx =

1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx

=
1

2

∫ +∞

0

1

x
× xβ

x2β + 1
dx =

1

2β

∫ +∞

0

βxβ−1

x2β + 1
dx

=
1

2β

[
arctan(xβ)

]x→+∞
x=0

=
1

2β
× π

2
=

π

4β
. (2)

Based on Equations (1) and (2), for any α ∈ R, we have∫ +∞

0

xβ

(x2β + 1)(x+ xα)
dx =

π

4β
.

This ends the proof. □

The corollary below is a modification of Corollary 3.1, with an additional
power term in the denominator. It continues to use the framework of Theorem
2.2 to present a two-parameter integral formula involving π.

Corollary 3.2 For any α ∈ R and β > 0, we have∫ +∞

0

xβ

(x2β + xβ + 1)(x+ xα)
dx =

π

3
√
3β

.

Proof. For any x, y > 0 and β > 0, we set

f(x, y) :=
1

xβ + yβ + xβyβ
.

Then, it is obvious that, for any x, y > 0, we have f(x, y) = f(y, x). Moreover,
we can write∫ +∞

0

xβ

(x2β + xβ + 1)(x+ xα)
dx =

∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx. (3)

It follows from Theorem 2.2, and the arctangent primitive and formulas that,
for any α ∈ R,∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx =

1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx

=
1

2

∫ +∞

0

1

x
× xβ

x2β + xβ + 1
dx =

1

2β

∫ +∞

0

βxβ−1

x2β + xβ + 1
dx

=
1

2β

[
2√
3
arctan

(
2xβ + 1√

3

)]x→+∞

x=0

=
1√
3β

×
{
π

2
− arctan

[
1√
3

]}
=

1√
3β

arctan
[√

3
]
=

1√
3β

× π

3
=

π

3
√
3β

. (4)
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Based on Equations (3) and (4), for any α ∈ R, we have∫ +∞

0

xβ

(x2β + xβ + 1)(x+ xα)
dx =

π

3
√
3β

.

This concludes the proof. □

The corollary below provides a simple consequence of Theorem 2.2, result-
ing in a new one-parameter integral formula.

Corollary 3.3 For any α ∈ R and β > 0, we have∫ +∞

0

min

(
xβ,

1

xβ

)
1

x+ xα
dx =

1

β
.

Proof. For any x, y > 0 and β > 0, we set

f(x, y) := min(xβ, yβ).

It is clear that, for any x, y > 0, we have f(x, y) = f(y, x). Moreover, we can
write ∫ +∞

0

min

(
xβ,

1

xβ

)
1

x+ xα
dx =

∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx. (5)

It follows from Theorem 2.2 and standard power primitives that, for any α ∈ R,∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx =

1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx

=
1

2

∫ +∞

0

1

x
×min

(
xβ,

1

xβ

)
=

1

2β

[∫ 1

0

βxβ−1dx+

∫ +∞

1

βx−β−1dx

]
=

1

2β

(
[xβ]x=1

x=0 +
[
−x−β

]x→+∞
x=1

)
=

1

2β
(1 + 1) =

1

β
. (6)

Based on Equations (5) and (6), for any α ∈ R, we have∫ +∞

0

min

(
xβ,

1

xβ

)
1

x+ xα
dx =

1

β
.

This completes the proof. □

The corollary below determines a one-parameter integral that is always
equal to the well-known Catalan constant. Once again, there are no particular
restrictions on the parameter α, which belongs to the entire real line.
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Corollary 3.4 For any α ∈ R, we have∫ +∞

0

arctan

[
min

(
x,

1

x

)]
1

x+ xα
dx = G,

where G denotes the Catalan constant.

Proof. For any x, y > 0 and β > 0, we set

f(x, y) := arctan[min(x, y)].

It is obvious that, for any x, y > 0, we have f(x, y) = f(y, x). Moreover, we
can write∫ +∞

0

arctan

[
min

(
x,

1

x

)]
1

x+ xα
dx =

∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx. (7)

It follows from Theorem 2.2 and well-known arctangent integral value of the
Catalan constant (see [1, Equation (2)]) that, for any α ∈ R,∫ +∞

0

f

(
x,

1

x

)
1

x+ xα
dx =

1

2

∫ +∞

0

1

x
f

(
x,

1

x

)
dx

=
1

2

∫ +∞

0

1

x
× arctan

[
min

(
x,

1

x

)]
=

1

2

[∫ 1

0

1

x
arctan(x)dx+

∫ +∞

1

1

x
arctan

(
1

x

)
dx

]
=

1

2
(G+G) = G. (8)

Using Based on Equations (7) and (8), for any α ∈ R, we have∫ +∞

0

arctan

[
min

(
x,

1

x

)]
1

x+ xα
dx = G.

This ends the proof. □

To the best of our knowledge, this formula is not documented in any of the
specialized literature on the Catalan constant. In particular, it is not included
in the list of integrals representing the Catalan constant in [1].

3.2 Diverse integral formulas

For brevity, several other results based on Theorem 2.2 are given below without
details. Some of these involve known special functions. Further details on these
functions can be found in [5].
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• For any α ∈ R, we have∫ +∞

0

log

[
1 + min

(
x,

1

x

)]
1

x+ xα
dx =

π2

12
.

• For any α ∈ R and β > 0, we have∫ +∞

0

(
x

x2 + 1

)β
1

x+ xα
dx = 2−β−1

√
π

Γ(β/2)

Γ[(1 + β)/2]
,

where Γ(x) denotes the gamma integral function.

• For any α ∈ R, we have∫ +∞

0

exp

(
−x2 − 1

x2

)
1

x+ xα
dx =

1

2
K0(2),

where K0(x) denotes the modified Bessel function of the second kind.

• For any α ∈ R, we have∫ +∞

0

sin

[
min

(
x,

1

x

)]
1

x+ xα
dx = Si(1),

where Si(x) denotes the sine integral function.

• For any α ∈ R, we have∫ +∞

0

sin

[
max

(
x,

1

x

)]
1

x+ xα
dx =

π

2
− Si(1).

• For any α ∈ R, we have∫ +∞

0

sinh

[
min

(
x,

1

x

)]
1

x+ xα
dx = Shi(1),

where Shi(x) denotes the hyperbolic sine integral function.

4 Open problem

Corollaries 3.1, 3.2, 3.3, and 3.4, along with the formulas presented in Sub-
section 3.2, are all derived from Theorem 2.2. However, given the variety of
integral techniques available, alternative systematic approaches may also lead
to these or similar formulas. This raises the following open question:

Is there a broader unifying framework or alternative scheme that can
systematically generate these integral formulas, independent of the method

based on Theorem 2.2?

Answering this could unify diverse techniques and extend the range of
applicable integral formulas in theory and practice.
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5 Conclusion

In conclusion, we have presented general integral formulas that are innovative
in their dependence on a single adjustable function and one or two tuning pa-
rameters. One of these parameters, α, can belong to the entire real line. Our
main result, Theorem 2.2, can be applied to numerous mathematical scenarios,
as exemplified in Corollaries 3.1, 3.2, 3.3, and 3.4 and Subsection 3.2. This can
lead to formulas with results involving well-known mathematical constants and
special functions. In particular, we have established a simple one-parameter
integral formula for the Catalan constant. Future work will include exploring
other applications of Theorem 2.2, as well as addressing the open problem for-
mulated in Section 4. This will require a deeper investigation into alternative
frameworks for deriving such integral formulas and a systematic study of their
implications across various fields of mathematics.
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