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Abstract

Studies on growth and distortion conditions (GDC) for
univalent functions (UF) in the unit disk (UD) have been con-
ducted over decades with interesting findings obtained for var-
ious functions like the conformal mappings and slice regular
functions with nice and very crucial in applications in various
fields. However, complete analysis of these conditions has not
been done. Recently, researchers gave an open question on the
growth and distortion theorems asking whether the family of
regular slice mappings is the largest subfamily of the unit ball
of UF. In this paper, we analyze the GDC for UF in the UD.
In particular, we consider the Koebe function (KF) and es-
tablish the its GDC by establishing its minimal and maximal
extremal boundary points.

Keywords: Growth, Distortion, Univalent function, Unit Disk.
2010 Mathematics Subject Classification: Primary 30C45; secondary
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1 Introduction

Schlicht functions or univalent functions are analytic functions which map a
domain in C onto another domain in an injective manner. Growth and Distor-
tion analysis of UF in the UD [34] is one of the key areas of complex analysis,
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it has attracted extensive research from a geometric perspective on account of
its application to conformal mappings. The starting point of the inquiry is on
the consideration of the unit disk being satisfactory for generalization of the
findings regarding path-connected domains. Take into account a Schlicht func-
tion φ : D → C. It is evident that if φ is mapped conformally from the domain
D in C, then the image domain is path-connected and not the entire C, if that
is not the case then even φ−1 would have been a constant by Liouville theorem
(see [25]. [34] and [36]). Consequently, it is clear that Riemann’s theorem
establishes a bijection between non-empty open and proper path-connected
subset U ⊂ C, U ̸= C, and φ : D → C. In this study we concentrated on
conditions that make the univalent function φ : D → C to map the origin to
itself (φ(0) = 0) and guarantee normalization of the derivative of the function
at the origin to 1 (φ′(0) = 1) [34], thus making analysis easier by getting rid of
inappropriate constants. These unique (injective and holomorphic) univalent
functions which conforms with these normalization conditions form what we
call the class of S. The key properties of the class of maps of S: it is locally
bounded, which means for every closed and bounded subset A ⊂ D ∃ a con-
stant MA : | φ(z) |≤ MA ∀z ∈ A and for all φ ∈ S, and it is closed, meaning
that if a sequence of functions {φn} in S uniformly converges on closed and
bounded subsets of D to φ, then φ is also in S [14]. These behaviors of the
functions in S are validated by growth and distortion theorems which provide
bounds on the modulus of the derivative of |φ′(z)|, for φ in class S (φ ∈ S) [34].
Precisely for z in a unit disk D, 1−|z|

(1+|z|)3 ≤ | φ′(z) | ≤ 1+|z|
(1−|z|)3 , for r = |z| < 1,

we have 1−r
(1+r)3

≤ | φ′(z) | ≤ 1+r
(1−r)3

. The distortion of the geometry of D by
the function φ is controlled by these inequalities in this theorem. Again, the
bounds on the modulus of φ is given by growth theorem [34]. That is, for
any φ ∈ S and r = |z| < 1, we have growth inequalities involved. These
inequalities of the growth theorem gives a description on how faster a function
φ(z) can grow as the magnitude of z tends to 1. It is important to note any
univalent function f in D can undergo transformation to fit in the class of
maps S and the other way round [14]. We can verify normalization in the
class of S to ascertain that this claim actually works. Therefore, φ satisfies the
standardization conditions φ(0) = 0, φ′(0) = 1 in class of maps S[10]. Con-
sequently, with regard to the above case, we have verified beyond reasonable
doubt that numerous findings associated with univalent functions have been
cited from the valuable characteristics of the class of maps S. The class of maps
S is the Kobe function [34]: k(z) = 1

4
[(1+z

1−z
)2 − 1] = z + 2z2 + 3z3 + 4z4 + ...

is the most extraordinary case. This functions is extremely vital in numer-
ous findings regarding univalent functions. Now, with respect to the above
findings we have uncovered, including normalization and ideal cases of class
of S, we are able to characterize conditions for growth and distortion of these
functions D. For numerical analysis to be done, development of algorithms
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is indispensable. In this regard, many studies have developed various algo-
rithms. Computational methods adopted by [20] pioneered the idea of numer-
ically approximating conformal maps and univalent functions. His work gave
early algorithms for computing images of UF using iterative and polynomial
approximation techniques. Moreover, the authors of [13] introduced robust
algorithmic method for conformal mappings using the Schwarz-Christofel for-
mula, a key tool in approximating univalent maps from the upper half-plane
to polygonal regions, and their MATLAB SC toolbox has remained influential
over the century. The research work by [19] portrayed estimates of higher-
order coefficients using iterative and recursive methods. The algorithms from
their work were later adapted into symbolic computation software like Maple
to automatically compute sharp bounds. Now, numerical analysis of growth
and distortion condition of univalent functions in a unit disk has been done
over decades [30]. To analyze, we find continuity and compare with the bounds
given by growth and distortion theorem. The results are then visualized by
plotting the magnitudes of φ(z) and φ′(z) against the modulus of z and then
overlap the bounds to visualize how the univalent function behaves within the
unit disk D. Precise plotting can be done by running a python code using
numpy and matplotlib [45].

2 Preliminaries

Certain preliminary concepts are instrumental in this study. We give them
under this section for ease of understanding of the work.

Definition 2.1 ( [14], Definition 3.2) An open unit disk D is defined as a
set of all points z in a complex plane C whose modulus is less than 1.

Definition 2.2 ([44], Definition 2.4) A map is said to be univalent in a
UD if it is analytic and one-to-one.

Definition 2.3 ([1], Definition 3.1) Growth analysis is the exploration of
the behavior of | φ(z) | as z → 1.

Definition 2.4 ([38], Definition 1.3) Distortion analysis studies how the
geometrical properties of a univalent function φ(z) are distorted as φ : D → C.

3 Literature review

Related literature with fundamental results are reviewed in this chapter. We
consider various studies and give a critique of the same.
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3.1 Growth and distortion criteria

The origin of this work is based on [39] that extended standard definitions by
the application of differential operators. This study highlights the derivatives
and coefficient bounds of the GD theorems relevant to mappings in this class,
mainly revealing the extreme points and convolution properties that contribute
to our understanding of the functional landscape in the unit disk D. Their per-
spective forms a basis for understanding the connection between growth and
distortion, which can be further leveraged to formulate specific algorithms.
In addition, this analysis is further enriched by the coefficients’ estimates for
bi-univalent classes, which consider functions that maintain bijection even in
their inverses[39]. Remarkably, [37] investigations give outcomes about cov-
ering, distortion, and rotation theorems relevant to such classes of functions,
thus aiding a deeper comprehension of functional implications when different
conditions are applied.
Building upon this foundation, the author of [35] clearly established that
growth and distortion theorems can also be applied to slice monogenic func-
tions within the context of Clifford algebras. They came up with rigorous
proofs for the comparable growth and distortion theorems in quaternionic rep-
resentations, covering the applicability of these theorems beyond baroque com-
plex analysis to more comprehensive settings. Their study demonstrates the
adaptive nature of growth and distortion conditions across diverse mathemat-
ical outlines consequently forming part of algorithm development.
The authors of [31] reveals that growth theorems describe how the magnitude
of a univalent function grows as the argument tends to the boundary of the
UD. For instance, the growth theorem for univalent functions states that φ ∈ S
and r = |z| < 1, r

(1+r)2
≤ | φ(z) | ≤ r

(1−r)2
and it has been given in a general

context to harmonic mappings and other subclasses of univalent functions with
sharp bounds established for specific families of functions [34].
In a more recent approach by [26], they scrutinized a family of functions which
are star in nature by formulating structural results that comprise of growth
theorems and coefficient estimates. Their study utilizes the established results
by ascertaining clear properties that can be employed into algorithmic proce-
dures. Moreover, the study by [37] also examined bi-univalent functions, which
maintain bijection when both direct mappings and their inverses are consid-
ered. These investigations have resulted into effective distortion estimates and
theorems pertinent within this context.
Several studies have revealed that the phenomenon of distortion in univalent
functions discloses intricate connections to their growth behavior. For example
the authors of [4] scrutinize (q, δ) - neighborhoods, easing probe of inclusion
ramifications and inequalities among various subclasses of holomorphic univa-
lent functions, suggesting opinions where outmoded estimates may be adapted
or developed under definite operator frameworks. Moreover, with respect to
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[26] studies, the connection between coefficient estimates and geometric prop-
erties such as starlikeness is crucial. They emphasize that certain structural
properties enable functions to maintain strict distortion controls when sub-
jected to analytical transformations like conformal mapping.
Another notable avenue of research concerns the coefficient conditions of uni-
valent and harmonic mappings. The writers of [32] reveals that coefficient
conditions of univalent and harmonic mappings basically from the Taylor se-
ries expansions is very fundamental in determining bijection and growth rates.
Studies of [7] also discovered the relations between coefficient bounds and geo-
metric properties like starlikeness through rigorous criteria involving harmonic
functions and their derivatives. These studies have also clarified that harmonic
version of the coefficients suggests a distinct understanding of the basic struc-
tures thereby allowing philosophers to craft subclasses of univalent functions
possessing unique growth properties.
The research work of [22] also demonstrates key contributions by proposing
specific properties of standardized univalent harmonic mappings. Their work
revolve around estimates of functions and bounds that help in understanding
the Bloch constant in these mappings thereby providing alternative insight
on growth conditions crucial for creating algorithms intended for studying
harmonic univalent functions. They ascertained that the algorithms can be
constructed on structural properties of classes of functions, foundational co-
efficient bounds and geometrical constrains within complex analysis. They
further emphasized that an effective algorithm should incorporate the various
coefficients, properly apply distortion theorems and comprehend how diverse
subclasses interrelate within the unit disk.
The authors of [16] and [23] separately investigated the harmonic mappings
obtained by shear construction, highlighting essential conditions for these map-
pings to be convex. These studies cooperatively clarify the elaborate interplay
between harmonicity and bijection in so doing emphasizing the importance of
conformal mappings in this realm.
Studies have also shown that the systematic examination of the inverses of such
functions also reveals growth conditions [27]. These studies have revealed how
convex functions and their inverses yield significant insights into the growth
behaviors of univalent functions by defining bounds related to Hankel determi-
nants associated with these classes. They further spell out the complex nature
of comparable constructs between univalent functions and geometric proper-
ties, which allows for a thorough understanding of distortion results thereby
broadening our understanding to include transformations and mappings be-
yond traditional boundaries.
Numerous studies have proclaimed that the study of harmonic univalent func-
tions highlights an entirely diverse perception on growth and distortion. A
recent study by [41] illustrates how specific properties influence coefficient
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bounds and distortion phenomena in symmetric starlike harmonic functions.
Here, the closure property under integral operators lay emphasis on how har-
monic functions can retain one-to-one correspondence while experiencing trans-
formations that preserve domain properties like the conformal mapping. In [32]
it is further portrayed how this aspect of growth serves as a gateway to ex-
ploring the boundaries of analytic function theory in intricate mathematical
frameworks.
The work of [18] articulated that estimates for coefficients derived from sub-
families of some bi-univalent mappings disclose essential bounds essential for
establishing the growth rates of these functions. The author emphasized that
it is mainly beneficial when exploring the inverse relationships between a func-
tion and its inverse in maintaining one-to-one correspondence over the unit
disk. Related studies by [5] further address partial sums of meromorphic uni-
valent functions, stirring the discourse on distortion behavior while connecting
back to the effects of coefficients on overall function behavior in the unit disk
domain.
Several studies have ascertain that growth conditions for univalent functions
can be well characterized through a combination of distortion theorems and
coefficient bounds. The study by [39] present a subclass of analytic univalent
functions that explore growth theorem, distortion theorems and coefficient
bounds which in turn reveals the geometric properties related to these func-
tions in the unit disk. The study by [14] further asserts how these properties
often concern the preservation of convexity, as they discusses relationships be-
tween harmonic univalent functions and their coefficients thereby providing
sharp inequalities that illustrate the growth behavior of these functions. Like-
wise, the authors of [3] extended this investigation by focusing on hyperbolic
univalent functions as they interpret distortion properties that inform the ge-
ometric mapping onto hyperbolic regions.
The research by [33] discovered that a foundational result regarding the growth
of UF is captured in the Koebe’s theorem, which state that for any univalent
function φ : D → C it’s image contains a disk of radius 1

4
. They assert that this

property guarantees that univalent functions can be inverted and their inverses
enjoy clear-cut properties inside the unit disk D. The studies by [29] and [17]
further validated that the mathematical form of such mappings permits one
to come up with the conditions under which the growth of these functions
can be quantified thereby offering the root for numerous algorithms intended
to estimate coefficients of univalent functions characterized by specific classes
satisfying the conditions for the class of maps S.
In conjunction with the growth criteria, several studies have addressed distor-
tion theorems describing how the geometric properties of univalent functions
can be quantified. The study by [9] incorporated theorems for these functions
where specific bounds are expressed and substantiated for various subclasses
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for instance those that are starlike or convex. Additionally, the authors of [49]
utilized norms of pre-Schwarzian and Schwarzian derivatives to effectively come
up with necessary and sufficient conditions for bijection of functions thereby
serving as essential tools in comprehending the growth metrics and distortions
associated with these mappings.
Again, other studies have shown that distortion theorems provide bounds [35]
which are essential for understanding the univalent functions. Precisely for
z in a unit disk D, 1−|z|

(1+|z|)3 ≤ | φ′(z) | ≤ 1+|z|
(1−|z|)3 [12]. This theorem which

is well defined by [12] has been generalized to harmonic mappings and other
subclasses of univalent functions [41].
The investigations by [41] shows that distortion properties light up the be-
havior of UF within the UD. They clarified how these properties help create
critical criterion defined within specific subclasses [41]. They investigated the
anew well-defined subclasses of harmonic univalent functions by coming up
with appropriate distortion theorems that organize essential features of these
mathematical structures. They clearly portrayed how broad view of distortion
theorems lead to better understandings of functional behavior across various
subclasses of univalent functions including those that are starlike and harmonic
in nature[41]. Remarkably, the authors of [21]further claim that characteristics
regarding extreme points and convolution conditions also add up to a broad
framework for examining the growth and distortion of these functions.
The study by [28] demonstrates that the nature of growth and distortion for
univalent functions involves dimensional aspects for instance the extension of
bijection criteria by the use of integral operators. They embarked upon bijec-
tion conditions pertinent to integral operators by proving how these operators
preserve the univalent nature while respecting the essential growth conditions
of the functions involved. Their study is further lightened up by the findings
of [21]whose efforts emphasize the nuanced interdependencies between growth,
distortion and the algebraic structures governing the univalent functions in
consideration. The authors of [50] derived sharp estimates for distortion and
growth rates by exploring harmonic mappings specifically the ones with nega-
tive coefficient analytic parts. Their exploration of harmonic mappings, gen-
erally on the concept of univalent functions, revealed the relationship between
coefficients and how they significantly influence the growth behavior in the
unit disk. Their study is very vital for formulating algorithms that account
for the exceptional features of different subclasses of harmonic mappings. Sev-
eral approaches have been utilized by researchers in developing algorithms for
estimating these growth and distortion conditions ([24] , [42]). For instance,
the study by [24] demonstrates how specific subclasses of univalent functions
can be explored through their Maclaurin’s series expansions where coefficient
estimates are derived by methods such as subordination techniques. Likewise,
the study by [2] established a robust computational framework for harmonic
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univalent functions where coefficient characterizations lead to the formulation
of covering theorems that provide tighter bounds for these functions.
Moreover, the investigation by [40] revealed that algorithms for analyzing UF
often involve estimating the coefficients of function obtained through the ex-
pansion of the power series. For instance, it is clear in research work of [11]
that the coefficients of a UF satisfy the de Branges theorem, which states that
|an| ≤ n for all n ≥ 2, which forms the basis for many coefficient estimation
[11]. Other studies have ascertained that numerical analysis of growth and
distortion conditions can be effectively conducted by implementing these al-
gorithms and applying them to illustrative cases of univalent functions. The
study by [6] gives an insight on how numerical methods involve iterative pro-
cedures or boundary value problems thereby allowing for the visualization of
distortion effects as parameters varies. Moreover, [46] further asserts that
results from such numerical experiments can tell stability properties and en-
lighten on the approximations of univalent functions under different mappings
in turn deeply enhancing our comprehension of their geometric properties.
Finally, on the same note as [40] clarifies, numerical methods such as the
Loewner differential equation, have been developed to study the dynamics of
univalent functions. These methods involve solving differential equations that
describe the evolution of the function under certain constraints. For instance,
[3] further clarifies how the Loewner equation can be utilized to examine the
Schwarzian derivatives of UF.

4 Research methodology

The systematic approaches that we employ to successfully achieve our objec-
tives are discussed herein. We outline the analysis techniques and character-
ization of growth and distortion conditions. The methodology guarantees an
efficient approach that integrates mathematical analysis and i is crafted in
a manner that it provides logical, comprehensible and analytical sound ap-
proach that employ both classical techniques from geometric function theory
and modern computational tools in addressing these specific objectives. In
short, the combination of theoretical analysis, algorithm development and nu-
merical analysis provides a robust framework for achieving our results. The
methodology is rooted out of the established framework of univalent func-
tion theory while also embracing modern computational methods to extend its
scope and applicability.
This research will adopt a hybrid study design incorporating both qualitative
theoretical analysis and computational quantitative methods. The study pri-
marily incorporated a deductive reasoning approach stemming from complex
analysis and geometric function theory. The deductive component begins with
the normalization of UF in the family of maps S from the foundational princi-
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ples of univalent function theory [34]. The theoretical framework is extended
by investigating specific subclasses like starlike which obey particular growth
and distortion bounds. The algorithmic design integrated in computational
quantitative methods facilitated the construction of procedures capable of ap-
proximating or verifying growth and distortion conditions, while the numerical
simulations analyzed these phenomena within the unit disk. This structured
methodology ensured a broad analysis of univalent functions by linking ab-
stract mathematical reasoning with practical computational techniques.
Theoretical Analysis is very essential for establishing rigorous mathematical
bounds for example, Koebe’s theorem [5]. Algorithmic approach is necessary
for practical computation, to help automate growth and distortion compu-
tations [23]. Numerical experiments are intended for validating theoretical
results and assessing real-world applicability [6]. The second stage is the algo-
rithmic development used for designing numerical algorithm or computational
methods for evaluating growth and distortion conditions, and implementation
in Python. The final stage entailed numerical analysis intended for implement-
ing and testing the algorithms on known univalent functions like Koebe func-
tion and starlike functions using numerical experiments, and for comparison
with theoretical predictions. The research work is theoretical and computa-
tional for that reason data is derived from various sources. The first source
is standard normalized univalent functions like Koebe function and convex
or starlike functions. The second source is numerically generated functions
like polynomials with constrained coefficients. The third source is published
coefficient bounds from existing literature [21]. Finally, data is derived from
computational libraries including pre-existing software like Python’s NumPy,
SciPy and Matplotlib libraries.

4.1 Fundamental principles

Theoretical foundations where conditions for growth and distortion bounds of
univalent functions are derived, and key theorems including Koebe, Bieber-
bach, and Schwarz Lemma are reviewed. These theorems provides the founda-
tion for analyzing the distortion and growth behavior of univalent functions,
then the results from the analysis are used to explore sharper bounds, improved
inequalities, and generalized conditions for the subclasses of these functions.

Theorem 4.1 (Koebe’s distortion theorem)-The inequality 1−|z|
(1+|z|)3 ≤

| φ′(z) | ≤ 1+|z|
(1−|z|)3 provides bounds on the modulus of φ′(z) for φ satisfying

the standardization conditions φ(0) = 0, φ′(0) = 1 in the class of S [34]. The
theorem demonstrates how the geometrical properties of a UF are distorted
under transformation in a unit disk D.
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For growth analysis, we have the growth theorem stated as:

Theorem 4.2 (Growth Theorem)-The inequality |z|
(1+|z|)2 ≤ | φ(z) | ≤

|z|
(1−|z|)2 relates the maximum modulus | φ(z) | to the radius |z| [14]. The growth
of the function φ(z) is shown by the behavior of the modulus of function φ(z)
towards the boundary of the UD as |z| → 1.

4.2 Analytical techniques

The characterization of growth and distortion conditions is tackled by rig-
orous derivation of analytical results involving extremal function theory and
conformal mapping methods. This is made possible by employing advanced
mathematical tools like conformal mapping, Koebe function, subordination
principles, sharp inequalities for|φ(z)| and |φ′(z)|based on various subclasses
of S, Schwarz’s lemma and, Loewner’s theory for the establishment of paramet-
ric representation and distortion of functions [41]. The methodology comprises
of growth analysis and distortion analysis techniques.

4.3 Growth analysis techniques

The characterization of growth conditions is by establishing sharp bounds for
|φ(z)| in D . The objective is met by applying the maximum modulus princi-
ple to relate |φ(z)| to boundary behavior, then, using subordination principles
to compare growth rates of different function classes and lastly, deriving in-
equalities using Loewner’s differential equation and Gronwall’s area theorem
[34].

4.4 Distortion analysis techniques

The characterization of distortion conditions is met by determining optimal
bounds for |φ′(z)|. This specific objective is met by applying Schwarz Lemma
and Koebe distortion theorem for initial estimates, then refining bounds us-
ing variational methods and extremal function techniques and finally, incor-
porating Loewner theory for dynamic distortion estimates under parameter
variations [4]. We acknowledge that special subclasses like convex and star-
like functions are used to analyze growth and distortion under geometric con-
straints whereas the bounded univalent functions are for studying distortion
under additional conditions for boundedness.
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5 Main results

Now we embark on characterization of growth and distortion conditions for KF
in the UD. The growth behavior of univalent functions within D is central to
understanding their geometric and analytic properties. This section focuses on
representing Koebe function as an extremal function for the growth analysis
in the unit disk, verifying its existence in the class S. These growth conditions
are interpreted through classical theorems including growth theorem and de
Branges’ theorem.
The KF as an extremal function is defined as:

k(z) =
z

(1− z)2
, for z ∈ D = {z ∈ C : |z| < 1}. (1)

We start by considering power series representation of Koebe Function.

Proposition 5.1 The Koebe function is analytic and can be represented as
a power series from a standard polynomial function ϕ(z) defined as

ϕ(z) = a0 + a1z + a2z
2 + . . . , (2)

where ai for i = 0, 1, 2, . . . are constants in complex plane and z ∈ C.

Proof. Differentiating the function ϕ(z) in Equation 2 we have

ϕ′(z) = a1 + 2a2z + . . . (3)

.

.

.

ϕ(8)(z) = 40320a8 + . . . (4)

Now at the origin (z = 0), we have

ϕ(0) = a0 → a0 = ϕ(0) → a0 = ϕ(0) (5)

ϕ′(0) = a1 → a1 = ϕ′(0) → a1 =
ϕ′(0)

1!
(6)

ϕ′′(0) = 2a2 → 2a2 = ϕ′′(0) → a2 =
ϕ′′(0)

2!
(7)

.

.

.
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ϕ(8)(0) = 40320a8 → 40320a8 = ϕ(8)(0) → a8 =
ϕ(8)(0)

8!
(8)

Substituting ai for i = 0, 1, 2, . . . in the original standard polynomial function ϕ(z),
we have

ϕ(z) = ϕ(0) +
ϕ′(0)

1!
z +

ϕ′′(0)

2!
z2 + . . . (9)

Suppose the standard polynomial function ϕ(z) is a binomial function defined
as

ϕ(z) = (1 + z)n. (10)

Differentiating the above binomial function above continuously we have

ϕ′(z) = n(1 + z)n−1 (11)

ϕ′′(z) = n(n− 1)(1 + z)n−2 (12)

.

.

.

ϕ(8)(z) = n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)(1 + z)n−8 (13)

At the origin ( z = 0), we have

ϕ(0) = 1 (14)

ϕ′(0) = n (15)

ϕ′′(0) = n(n− 1) (16)

.

.

.

ϕ(8)(0) = n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7) (17)

Substituting ϕ(0), ϕ′(0), ϕ′′(0), ..., ϕ(8)(0), . . . in Equation 17 we have

ϕ(z) = 1 +
n

1!
z +

n(n− 1)

2!
z2 ++ . . . (18)

substituting z with −z, we have

ϕ(−z) = 1 +
n

1!
(−z) +

n(n− 1)

2!
(−z)2 + . . . (19)
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Upon simplification it reduces to

ϕ(−z) = 1− n

1!
z +

n(n− 1)

2!
z2 − . . . (20)

Koebe function is defined as k(z) = z
(1−z)2

can be expressed in the form

k(z) = z(1− z)−2 = z(1 + (−z))−2, (21)

where ϕ(−z) = (1 + (−z))−2 taking n=-2. Therefore, it becomes

k(z) = z
{
1− n

1!
z +

n(n− 1)

2!
z2 − n(n− 1)(n− 2)

3!
z3 + · · ·

}
(22)

Now substituting n by -2 we have

k(z) =
z

(1− z)2
= z

{
1− −2

1!
z +

−2(−2− 1)

2!
z2 − · · ·

}
=

∞∑
n=1

nzn (23)

Thus, the power series representation of Koebe function is given as

k(z) =
z

(1− z)2
= z + 2z2 + . . . =

∞∑
n=1

nzn (24)

This series converges absolutely for |z| < 1, proving that k(z) is analytic in D.

Next we give a result on the continuity, boundedness, injectivity and univalence
of KF in the following theorem.

Theorem 5.2 The Koebe function is continuous, bounded, injective and
extremal univalent.

Proof. The proof for continuity and boundedness is trivial. To prove that KF
is injective, we need to show that if k(z1) = k(z2) then z1 = z2. It follows from
[11] that (z1−z2)(1−z1z2) = 0. This gives two possibilities, that is, z1−z2 = 0
=⇒z1 = z2 or 1 − z1z2 = 0 =⇒ z1z2 = 1. However, for z1, z2 ∈ D, we have
|z1z2| = |z1||z2| < 1. Therefore, z1z2 = 1 is impossible in D. Thus, the only
solution is z1 = z2 proving that k is injective on D. By Proposition 5.1, KF is
analytic in the unit disk, and again having demonstrated its injectivity on D,
it is therefore enough that it is one of the extremal univalent function for the
analysis of growth and distortion conditions in the unit disk.
Next, we consider normalization of KF in the class S. Koebe function is
normalized in the class of S since it satisfies the conditions:

Theorem 5.3 The Koebe function is satisfies normalization criterion in
the class of S.



126 Peter Ogol, Aminer Titus, Benard Okelo

Proof. From the hypothesis of the theorem, we have the following conditions:

k(0) =
0

(1− 0)2
= 0 (25)

k′(z) =
1 + z

(1− z)3
=⇒ k′(0) =

1 + 0

(1− 0)3
= 1. (26)

The above conditions can be verified via power series representation from where
we have the constant term a0 = 0 (since the series starts at n = 1) and the
linear term a1z = 1 · z implying a1 = 1. This matches the normalization
conditions.
Next, we consider a result for growth.

Proposition 5.4 For z ∈ D with |z| = r < 1 we have

r

(1 + r)2
≤ |φ(z)| ≤ r

(1− r)2
. (27)

Proof. Inequality 27 indicates that the growth of the function is constrained
between two functions of r, which diverge as r → 1−. The lower bound limits
how slowly the function may grow near the boundary of the unit disk while
the upper bound represents the fastest possible growth under the univalence
condition. The significance of this theorem is twofold in the sense that it con-
firms that univalent functions cannot grow arbitrarily fast within D as well
as providing benchmarks for comparing specific univalent functions. The KF
achieves equality according to the theorem since an = n and a1 = 1.

Now, we consider radial growth of the modulus of KF and we analyze how it
behaves as z approaches the boundary of D.

Theorem 5.5 Let z = reiθ, where 0 ≤ r < 1 and θ ∈ [0, 2π) then

|k(z)| = r

|1− reiθ|2
≈ reiθ(1 + 2reiθ + 3r2e2iθ + · · ·) (28)

Proof. First, we check the behavior at the key points:

(i). At r = 0: |k(0)| = 0
|1−0eiθ|2 = 0.

(ii). For small r: k(z) ≈ reiθ(1 + 2reiθ +3r2e2iθ + · · ·) indicating the function
grows almost linearly.

(iii). As r → 1−: The denominator (1 − reiθ)2 → 0 causing the modulus of
|k(z)| to blow up towards infinity that is |k(z)| → ∞.
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Next we consider Extreme Cases:
1. Maximum Growth (on the Boundary |z| = r). By the Maximum Modulus
Principle, the maximum of |k(z)| for |z| ≤ r occurs on |z| = r. Let z = reiθ,

then: |k(z)| =
∣∣∣ reiθ

(1−reiθ)2

∣∣∣ = r
|1−reiθ|2 . To maximize |k(z)|, minimize |1 − reiθ|.

The minimum occurs at θ = 0, that is, where z = r). minθ=0 |1 − reiθ| =
|1−re0| = |1−r(cos0+ isin0)| = |1−r(1+ i0)| = |1−r(1)| = 1−r. Therefore,
max|z|=r |k(z)| = r

(1−r)2
∼ 1

(1−r)2
, as r → 1−, max |k(z)| → +∞.

2. Minimum Growth (on the Boundary |z| = r) The minimum modulus occurs
when |1 − reiθ| is maximized, which happens at θ = π, that is, maxθ=π |1 −
reiθ| = |1−reiπ| = |1−r(cosπ+isinπ)| = |1−r(−1+i0)| = |1−r(−1)| = 1+r.
Therefore, min|z|=r |k(z)| = r

(1+r)2
∼ 1

(1+r)2
. As r → 1−, this approaches

limr→1− min|z|=r |k(z)| = 1
(1+1)2

= 1
4

= 0.25 Hence, KF exhibits extremal
growth behavior making it central in the analysis of growth conditions.

Next we consider distortion behavior of Koebe function which is fundamen-
tal in understanding the geometric properties of univalent functions within the
unit disk. This section focuses on representing the Koebe function as an ex-
tremal function for distortion analysis verifying its properties and analyzing
the bounds for the modulus of its derivative. We utilize the Koebe function as
an Extremal Function for analyzing distortion conditions. The derivative of
KF is given by k′(z) =

∑∞
n=0(n+ 1)2zn. The derivative of the growth theorem

gives the distortion theorem.

Proposition 5.6 Growth theorem states that for z ∈ D with |z| = r < 1
we have

1− |z|
(1 + |z|)3

≤ |φ′(z)| ≤ 1 + |z|
(1− |z|)3

, |z| = r < 1. (29)

Proof. These inequalities quantify how the geometry of D is distorted under
φ. We need to to verify that the Koebe function achieves equality in both
bounds making it extremal. For the Koebe function k(z) = z

(1−z)2
= z+2z2 +

3z3+4z4+5z5+ . . . : z ∈ D = {z ∈ C : |z| < 1}. For modulus of the derivative

we have |k′(z)| = | 1+z
(1−z)3

| = |1+z|
|1−z|3 . For maximum distortion on the Boundary

|z| = r, we have by the Maximum Modulus Principle, the maximum of |k′(z)|
for |z| ≤ r occurs on |z| = r. Let z = reiθ, then |k′(z)| =

∣∣∣ 1+reiθ

(1−reiθ)3

∣∣∣ = 1+r
|1−reiθ|3

To maximize |k′(z)|, minimize |1 − reiθ|. The minimum occurs at θ = 0,
that is, z = r minθ=0 |1 − reiθ| = |1 − re0| = |1 − r| = 1 − r. Therefore,
max|z|=r |k′(z)| = 1+r

(1−r)3
∼ 2

(1−r)3
. This matches the upper bound. As r →

1−, max |k′(z)| → +∞. For minimum distortion on the boundary, |z| = r.
The minimum derivative modulus occurs when |1− reiθ| is maximized, which
happens at θ = π, that is, maxθ=π |1 − reiθ| = |1 − reiπ| = |1 − r(cosπ +
isinπ)| = |1−r(−1)| = 1+r. Therefore, min|z|=r |k′(z)| = 1−r

(1+r)3
. This matches
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the lower bound of the Distortion Theorem. As r → 1−, this approaches
limr→1− min|z|=r |k′(z)| = 1−1

(1+1)3
= 0.

Remark 5.7 For the implications of the Distortion Theorem we consider:
1. Boundary Behavior: Near the origin (r ≈ 0) the distortion is close to
1. The lower bound 1−r

(1+r)3
→ 0 indicating that derivatives may vanish near the

boundary. As r → 1−, the upper bound 1+r
(1−r)3

→ +∞ showing that derivatives
of elements of class S can grow rapidly near the boundary.
2. Geometric Interpretation: The theorem controls how φ stretches or
compresses distances in D. The Koebe function stretches the disk maximally
toward the boundary point z = 1.

6 Open Problems

We have analyzed growth and distortion conditions for univalent functions in
the unit disk. Several researches have been conducted over decades with in-
teresting findings obtained for various functions like the conformal mappings
and slice regular functions with nice and very crucial in applications in vari-
ous fields. However, complete analysis of these conditions has not been done.
Recently, researchers gave an open question on the growth and distortion the-
orems asking whether the family of regular slice mappings is the largest sub-
family of the unit ball. In this paper, we have analyzed, in particular, the
Koebe function and established its GDC by establishing its minimal and max-
imal extremal boundary points. This leaves an open question as stated below.
Problem 1: Can one develop an efficient algorithm for analyzing the growth
and distortion conditions given in this work?

References

[1] D. Aharonov, Bazilevic theorem and the growth of univalent functions,
Springer, 86 (2006), 1-9.

[2] O. Ahuja, A. Cetinkaya and V. Ravichandran, Harmonic univalent func-
tions defined by post quantum calculus operators, Acta universitatis
sapientiae-mathematica, 11(2019), 23-45.

[3] S. S. Al-Azawee and S. S. Alhily, Some Geometric Properties of a Hyper-
bolic Univalent Function, Iraqi Journal of Science, 2(2021), 27-39.

[4] E. Amini, M. Fardi, S. Al-Omari and K. Nonlaopon, Results on univalent
functions defined by q-analogues of Salagean and Ruscheweh operators,
Symmetry, 14(2022), 17-25.



Growth and Distortion Analysis of Univalent Functions 129

[5] M. K. Aouf, A. O. Mostafa, Partial sums for a certain subclass of mero-
morphic univalent functions, Sarajevo journal of mathematics, 45(2014),
78-90.

[6] S. Benedict, P. Koskela and X. Li, Weighted Hardy spaces of quasicon-
formal mappings, The Journal of Geometric Analysis, 32(2022), 97-119.

[7] S. V. Bharanedhar and . Ponnusamy, Coefficient conditions for harmonic
univalent mappings and hypergeometric mappings, Springer, New York,
2014.

[8] F. Bracci, M. D. Contreras and S. Diaz-Madrigal, Alesandro-Clark mea-
sures and semigroups of analytic functionsin the unit disk, Springer, New
York, 2008.

[9] V. Bravo, R. Hernandez and O. Venegas, Two-point distortion theorems
for harmonic mappings, Springer, New York, 2022.

[10] H. Cartan, Elementary theory of analytic functions of one or several com-
plex variables, Courier Corporation, 1995.

[11] M. Chuaqui, P. Duren and B. Osgood, Two-point distortion theorems for
harmonic mappings. Illinois Journal of Mathematics, 53(2009), 1061-1075.

[12] I. V. Denega and Y. V. Zabolotnyi, Application of upper estimates for
products of inner radii to distortion theorems for univalent functions,
Matematychni Studii, 60(2023), 138-144.

[13] T. A. Dricoll and L. N. Trefethen, Schwarz-Christoffel mapping. Cam-
bridge University Press, 2002.

[14] P. L. Duren, Harmonic univalent functions, Springer-Verlag, New York,
2004.

[15] P. L. Duren, Univalent functions. Springer Science & Business Media,
2001.

[16] A. El-Faqeer and S. Supramaniam, On convolution and convex combina-
tion of harmonic mappings, Journal of Mathematics, 11(2021), 345-462.

[17] E. Erhan, H. Orhan and H. M. Srivastava, Some Sufficient Conditions
for Univalence of Certain Families of Integral Operators Involving Gen-
eralized Bessel Functions, Taiwanese Journal of Mathematics, 15(2011),
883-917.

[18] B. A. Frasin, Coefficient bounds for certain classes of bi-univalent func-
tions, Hacettepe Journal of Mathematics and Statistics, 5(2014), 12-27.



130 Peter Ogol, Aminer Titus, Benard Okelo

[19] A. W. Goodman, Univalent Functions, Mariner publishing company, inc.
Tampa Florida, 1983.

[20] P. Henrici, Applied and Computational Complex Analysis, Springer, New
York, 1986.

[21] A. Janteng and S. A. Halim, Properties of harmonic functions which are
convex of order β with respect to symmetric points, Tamkang Journal of
Mathematics, 12(2009), 68-87.

[22] S. Kanas and D. Klimek-Smet, Coefficient estimates and bloch’s constant
in some classes of harmonic mappings, Bulletin of the Malaysian Mathe-
matical Sciences Society, 39(2015), 78-90.

[23] R. Kumar, S. Gupta and S. Singh, Linear combinations of univalent har-
monic mappings convex in the direction of the imaginary axis. Bulletin of
the Malaysian Mathematical Sciences Society, 39(2015), 20-35.

[24] S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial
coefficients of bi-univalent functions, arXiv:1203.5480, 2012.

[25] V. A. Lars, Complex Analysis, McGraw-Hill, 1979.

[26] R. Mendiratta and S. Nagpal and V. Ravichandran, On a subclass of
strongly starlike functions associated with exponential function, Bulletin
of the Malaysian Mathematical Sciences Society, 76(2015), 67-89.

[27] M. Obradovic and N. Tuneski, Sharp bounds of Hankel determinants of
second and third order for inverse functions of certain class of univalent
functions, arXiv:2104.01204, 2021.

[28] A. Oprea and D. Breaz, Univalence conditions for a general integral op-
erator, An. St. Univ. Ovidius Constanta, 2015.

[29] F. Perez-Gonzalez and J. Rattya, Univalent functions in Hardy, Bergman,
Bloch and related spaces, Journal d’Analyse Mathematique, 105(2008),
125-148.

[30] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, 1975.

[31] S. Ponnusamy, J. Qiao and X. Wang, Uniformly locally univalent har-
monic mappings, Proceedings-Mathematical Sciences, 128(2018), 1-4.

[32] N. Rani, Some sub-classes of harmonic univalent functions, International
Journal of Engineering Technology and Management Sciences, 2(2023),
67-79.



Growth and Distortion Analysis of Univalent Functions 131

[33] V. Ravichandran and S. Supramaniam, Initial Coefficients of Bi-univalent
Functions, arXiv-1207, 2012.

[34] G. Ren and X. Wang, The Growth And Distortion Theorems For Slice
Regular Functions, arXiv:1410.4369v1, 2014.

[35] G. Ren and X. Wang, Growth and distortion theorems for slice monogenic
functions, Pacific Journal of Mathematics, 43(2017), 78-90.

[36] S. A. Roig, Univalent functions. The Bieberbach conjecture, Lecture notes
series, 2019.

[37] M. Rossdy, R. Omar and S. Soh, Bi-Univalent Function Classes Defined
by Using an Einstein Function and a New Generalised Operator. Science
and Technology, Indonesia, 2023.

[38] O. Roth, Distortion theorems for bounded univalent functions, Analysis,
23(2003), 347-70.

[39] A. H. Saheb and A. K. Al-Khafaji, On the Class of Analytic and Uni-
valent Functions Defined by Differential Operator. In Journal of Physics:
Conference Series, IOP Publishing, 2021 .

[40] E. Schippers, Distortion theorems for higher order Schwarzian derivatives
of univalent functions, Proceedings of the American Mathematical Soci-
ety,128(2000), 3241-3249.

[41] K. R. Shamsan and S. Latha, Some results on (j,k) symmetric starlike
harmonic functions, Journal of Mathematics and Informatics, 12(2018),
23-38.

[42] H. M Srivastava, M. F. Sakar and G. Ozlem, Some general coefficient
estimates for a new class of analytic and bi-univalent functions defined by
a linear combination, Filomat, 32(2018), 1313-1322.

[43] L. F. Stanciu and D. Breaz, Univalence Criteria for Two Integral Opera-
tors, Abstract & Applied Analysis, 43(2012), 87-101.

[44] D. K.Thomas, N. Tuneski and A. Vasudevarao, Univalent functions: a
primer Walter de Gruyter GmbH & Co KG, 2018.

[45] J. VanderPlas, Python data science handbook: Essential tools for working
with data. O’Reilly Media, Inc., 2016.

[46] A. K. Wanas and H. K. Raadhi, Maclaurin coefficient estimates for a new
subclasses of m-fold symmetric bi-univalent functions, Earthline Journal
of Mathematical Sciences, 2(2023), 199-210.



132 Peter Ogol, Aminer Titus, Benard Okelo

[47] N. Weaver, Lipschitz algebras, 2nd ed., World Scientific Publishing Co.,
River Edge, NJ, 2018.

[48] M. Yazdi, Some distortion theorems for new subclass of harmonic univa-
lent functions, Honam Mathematical Journal, 23(2020), 45-58.

[49] S. Zafar, Norm estimates of the pre-schwarzian derivatives for functions
with conic-like domains, Mathematics, 11(2023), 20-33.

[50] M. Zhu and X. Huang, The distortion theorems for harmonic mappings
with negative coefficient analytic parts, Journal of Mathematical Study,
11(2016), 1-16.


