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Abstract

Various notions of hypercyclicity have been studied over
along period of time, however, complete characterization of
this property has not been done. In fact, a lot of open ques-
tions remain unanswered with regard to subspace hypercyclic-
ity. Most of these studies have been done in special cases of
finite dimensional Banach spaces. It is therefore interesting
to address these questions in general Banach spaces. In this
research therefore we extend an investigation on subspace hy-
percyclicity by investigating different notions of the subspace
hypercyclicity. We show that operators under direct sum sat-
isfies various subspace-hypercyclicity criteria.
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1 Introduction

In the realm of functional analysis, there exists a profound interplay be-
tween invariant subspaces and orbits of hypercyclic operators. A key concept
in this domain is hypercyclicity, which characterizes operators whose orbits
densely cover the entire space [46]. The notion of hypercyclicity traces back
to Beauzamy who was inspired by the well established concept of cyclicity
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in Functional analysis [10]. This study laid the groundwork by demonstrat-
ing that translation operators have dense orbits in spaces of complete func-
tions that uniformly converge on the compact sets. Building upon Birkhoff’s
work in [10], the findingsof Maclane [25] explored entire functions further and
established that {f, f', f”, f"”,...} fills the entire H(C). The author also es-
tablished that differential operators D in a complex space C are dense in
H(C). Kim and Song [22] researched on numerically hypercyclic operators
and established the link between several operators satisfying general hyper-
cyclicity criterion. Shkarin [45] extended this work by creating operators
whose square is not numerically hypercyclic but are numerically hypercyclic
on their own. They also confirmed the existence of numerically hypercyclic
operators on C2. Moreover, they further characterized certain diagonal op-
erator S € B(C*) and proved that diagonal operators have two orbits that
are not numerically hypercyclic, but the union of these two orbits is dense
in C. In the process of the investigation they further restricted an opera-
tor on a finite dimensional invariant subspaces, hence providing the necessary
and sufficient conditions of weak and strong numerically hypercyclic oper-
ators. This was accomplished by establishing the relationship between the
point spectrum and strong numerically hypercyclic operators as well as the
relationship between the spectrum and weak numerically hypercyclic opera-
tors. Ansari [2] proved that if S is a hypercyclic operator and for any k > 1,
then it follows that S* is also hypercyclic. consequently HC(S*) = HC(S).
Saavendra and Muller [41] established that if an operator is hypercyclic then
so is its rotation. They proved that Orb(S,z) = {S"z:ne N} = X iff
Orb(\,S,z) = {M\S"x:neN,Ae S} = X, more particulaly they proved
that for any ¢ € R then we have HC(S) = HC(e¢*). Bayart and Costakis [5]
studied operators which are rotated by complex numbers whose modular is unit
with polynimial phase and further demonstrated that when the phase grows at
a geometric rate to infinity, hypercyclicity fails. The aforementioned findings
make it abundantly evident that weakly and hypercyclic operators share many
characteristics. These properties include, for example, the spectrum being
empty. De la Rosa [12] further examined existing examples and proved that
difference also exist. Chan [11] examined separable infinite dimensions H. The
investigation’s conclusion was that the strong operator topology has an orbit
that fills the entire complex Hilbert space. Furthermore, the operator norm
topology has a dense linear span in H. In addition the research established
that a set of bounded linear operators B(H) did posses non-hypercyclic opera-
tors [40]. Matache [27] proved that contractions can sometimes be hypercyclic
if multiplied by a scalar that is strictly greater than 1. The author further re-
searched on contractions and proved that if those operators have finite defect
indices, then they have hypercyclic scalar multiple. The interest to consider
contraction was because the well known fact that contractions have a bounded
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orbit hence non-hypercyclic. Further operators that are similar to contrac-
tion are not hypercyclic. Kitai [21] contributed significantly on the study of
hypercyclicity by formulating conditions for continuous linear operators to ex-
hibit hypercyclicity. This research was extended to invertible operators and
the above results were also admitted. Additionally the above property was
investigated in &>S;_; on &2, H and it was proved that S’X N Z # () and
S'Z NY # ( holds for hereditarily hypercyclic operators. Bes and Peris [9] in
their investigations proved that S@®.S is hereditarily hypercyclic when S satisfy
hypercyclicity criterion. Their work provided insights into the behavior of hy-
percyclic operators of the composite operator on the separable Frechet Space
F. Herrero [18] addressed the issue of the connection between a hypercyclic op-
erator and its inverse and established that S&® S is hypercyclic if S satisfies the
hypercyclicity criterion. Further in the research the study established that if
the power operator S™ is hypercyclic then S"®S™ = (S@.S)™ is also hypercyclic.
Grosse-Erdmann and Bernal-Gonzale [15] investigated hypercyclicity proper-
ties of almost-commuting sequence S,,, operators on an F-space. They further
strengthened their work by proving that S,, @ S,, is hypercyclic on X x X.
This result motivated them and they investigated the hypercyclicity properties
of almost commuting sequences of operators, more particularly, they investi-
gated hypercyclicity of operators in X with hereditary subsequences and found
out that S,, @ .... ® S,, (M-fold) is densely hereditarily hypercyclic on X™.
The work of Rolewicz [40] investigated hypercyclicity properties of (A,,S™).
Saavendra-Leon and Muller in [41] established that if S € B(X) and (\,;,)
is a sequence of complex numbers and if ()\,,S™) satisfies conditions (C') and
the supp,|Am|d™ < oo where d = dist(0,.(S5)), then (\,,S™) has a subspace
hypercyclic subspace on a closed infinite dimensional space. It is generally
recognized that condition (C') is the weakest approach of testing for hyper-
cyclicity. Manuel and Charles [26] showed we have operator S that has dense
orbits but S @ S does not have a dense orbit. They demonstrated that if an
operator S is M-hypercyclic then §(S) intersects with the unit circle, but ele-
ments of §(5) do not. It should be noted that the notion of M-hypercyclicity
is strictly infinite dimensional. Madore and Martinez-Avendano [24] work mo-
tivated Bamerni and Kilicman [4] to research on diskcyclic vector subspaces.
They proved that if T"is diskcyclic then the product of the B[0, 1] and the union
of the numerical range of all iterations of T" is dense in Hilbert space. Further-
more, they proved that in some instances there exists diskcyclic operators that
have non-trivial closed invariant subspaces. Furthermore, they proved these
operators have dense linear subspace that are in particular infinite dimensional
with nonzero diskcyclic vectors. Bamerni and Kilicman [3] established the re-
lationship between orthogonal projections onto a closed subspace M of H. In
their research they proved the hypercyclicity of the product an orthogonal pro-
jection with the orbit of subspace hypercyclic operator and established the link
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between the invariant subspace M+ under and an operator S and the projec-
tion P. In the research on M*-hypercyclicity and orthogonal projection, they
proved that M+ C Orb(PS,r) N M1). Saavendra-Leon and Muller in [42] es-
tablished conditions that guarantee hypercyclicity for a sequence of operators
and further proved that i-sequence of operators Sy @ ... @ S is also hyper-
cyclic. Grosse-Erdmann and Bernal-Gonzale [15] who developed and proved
the hypercyclicity criteria for a sequence of operators. They further proved
that Sy @ Sk @ .... is hypercyclic. Building on the above results, Moosapoor
[35] developed the concept of M-hypercyclicity for a sequence of operators and
established the equivalence relationship between {S;}, and the invariance of
S; € B(X) and M-hypercyclicity and also proved that M-hypercyclic operator
is M-hypercyclic. Bes and Peris in [9] researched on the notion of herditarily
hypercyclic operators and proved that of S is hereditarily hypercyclic then so
is S@S. They further proved that if S is hereditarily hypercyclic then so is S°
and extended this results and proved that S*@® S = (S @ S)" is also hereditar-
ily hypercyclic. They expanded their investigations and established that if S
is hypercyclic then S and S* share the same hypercyclic vector. Moosapoor
[34] building on the above results introduced and investigated the notion of
hereditarily subspace-hypercyclic operators. In their research, they discovered
sufficient requirements for an operator to be hereditary subspace-hypercyclic
[50]. Furthermore Moosapoor [32] went on to give the subspace-supercyclicity
criterion. They researched on hereditary hypercyclic operators and came up
with the notion of hereditarily subspace-hypercyclic operators with all the nec-
essary and sufficient conditions an operator must satisfy for it be hereditarily
subspace-hypercyclic and the research established that hereditarily subspace-
hypercyclic operators are subspace hypercyclic. Herrero [18] proved that S®S
hypercyclic when T satisfy the hypercyclicity criterion. This was only possi-
ble if the operator is hereditarily hypercyclic and thus S&S. This notion was
extended to two power operators and proved that if S @ S and S™ satisfies
the hypercyclicity criterion than S™ @ S™ = (S @ S)™ is hypercyclic. Bayart
and Matheron in [6] researched on the weakly supercyclic operators. In their
research they established that weakly supercyclic hyponormal operators are
generally a multiple of unitary operators and hyponormal operators are not
N-supercyclic. They further established the equivalence in bilateral weighted
shifts where they proved that N-supercyclicity is equivalent to supercyclicity.
Nathan [37] introduced the concept of n-supercyclicity. During the investiga-
tion, they demonstrated that on a Hilbert space H there exist bounded linear
operators that have dense orbits on Hilbert space that have n-dimensional sub-
spaces. This research resulted in a new set of operators known as n-supercyclic
operators and create a set of conditions that operators must meet in order to
be n-supercyclic. This criteria was extended to direct sum and conclude that
(B}, Sk) is n-supercyclic on @&}_, Hi. This notion was extended to the direct
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sum of infinite number of separable Hilbert spaces and proved that (&g2,Sk) is
oo-supercyclic on (672, Hy). The author furthermore utilized the knowledge of
spectral theory to establish that an operator S is 2-supercyclic and proved that
if S has a decomposition property then S and S* are 2-supercyclic. The study
of [14] create a subspace-supercyclicicity criteria and provide some equivalent
criterion. They provided examples of direct sum in backward shifts resulting in
subspace hyperclic operators. This notion motivated Bamerni and Kilicman [4]
who proved that the direct sum of two different unilateral backward weighted
shifts B; @ B, in the Hilbert space I?(N) is M; & Ms-subspace hypercyclic. In
[6], they established that if S®.S subspace hypercyclic then the two individual
operators are subspce hypercyclic. Further from there research they proved
that the converse does not hold. In their investigation they come up with
following questions; Suppose S@S is M-hypercyclic, are both operators M-
hypercyclic?, additionally suppose that the two operators are M-hypercyclic
does that imply that S®S M-hypercyclic?, again suppose that S satisfies M-
hypercyclic criterion, does it mean that S&S is also M-hypercyclic?, finally
suppose S@S is M-hypercyclic, does S satisfy hypercyclic criterion? The first
two questions positively were answered while the last two were given partial
answers. Motivated by the work of Nathan [38] that is if S = 57,5y, ...,S,, is
m-tuple of operators that commute then S is hypercyclic and the work of [40]
on scaled hypercyclic operators, Yousefi and Sharifi[49] investigated subspace
supercyclicity for a tuple of operators. In their investigation, they established
that S = ASy, 59, ..., 5, is subspace supercyclic. They further developed a
subspace-supercyclicity criterion for tuples of operators. They also established
that S = (S = 51,99, ..., Sm) @ (S = Sy, S, ..., Sy) is M & M subspace-
hypercyclic. The work of [5] introduced the concept of frequently hypercyclic
operators and stated off by giving examples of frequently hypercyclic opera-
tors. Such operators were the translation operators. Jeneker [20] research on
various methods that can be used to determine whether an operator is hy-
percyclic or frequent hypercyclic. The author also analysed a wide range of
operators on F-space and established that if S is hypercyclic, then the set of
hypercyclic vectors is dense in G5 and of interest was that if S is hypercyclic
the SBES@®...H S is also hypercyclic and finally proved that hypercyclicity does
not necessarily imply frequent hypercyclicity. Menet [29] extended the scope of
research on frequently hypercyclic operators by researching on the properties
U-frequently hypercyclic operators and proved that the exists U-frequently
hypercyclic operators whose inverse is not dense. The author utilized the C-
type operator which operator with four parameters. Menet [28] investigated
hypercyclicity properties of invertible operators and particularly, invertible
frequently hypercyclic operators. The research answered a long standing ques-
tion of Bayart and Grivaux in [7] which to establish hypercyclicity properties
if frequent invertible hypercyclic operator. Bayart and Ruzsa [8] established
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the link between an invertible hypercyclic operator S and U-frequently hyper-
cyclicity. Grosse-Erdmann in [16] researched on bilateral weghted shifts and
proved that T, hypercyclic under invertibility. Building on this concept of fre-
quently hypercyclic operators Moosapoor in [33] introduced and investigated
the notion of M-frequently hypercyclic operators and proved that subspace-
frequently hypercyclic operators are M-hypercyclic. Further S? where p € N
and S @ S are subspace hypercyclic provided that S is subspace-frequently
hypercyclic. Heo, Kim and Kim in [17] researched on g-frequently hypercyclic
operators. In their research they developed and proved the g¢-hypercyclicity
criterion and also investigated properties of g-frequently hypercyclic subspaces
of bounded linear operator in F-spaces and also established that g-frequently
hypercyclicity subspaces also admits the infinite dimensional property. Moos-
apoor [32] using hypercyclic bounded operators and scaled identity operators
from Hilbert spaces constructed an operator; S = A® MI B I B ... DN, T
which was subspace-hypercyclic. Tajmouti et al in [47] come up with the no-
tion of subspace-hypercycliciity of Cj-semigroup and investigated semigroups
and in the process of the research they developed and proved the necessary and
sufficient conditions this semigroup satisfies for it to be subspace-hypercyclic.
They partially characterized the notion of supercyclic Cy-semigroup, devel-
oped and proved supercyclicity criterion and provided equivalent results for
this criterion. El Berrag and Tojmouati [13] further extended this knowledged
proved that if (S; @ S) is My @ M;-supercyclic Cy-semigroup, then S; and
S, are M;-supercyclic and M, -supercyclic Cy-semigroups respectively. Moos-
apoor [30] established equivalence relationship between M-supercyclicity cri-
terion and the notion of invariant subspaces while Moosapoor [33] established
that hypercyclic operators have invariant subspaces that are dense exception
of zero of subspace-hypercyclic vectors. Further, during the research process,
it was determined s that all members are made up of M-hypercyclic vectors
for any operator from this family. Tajmouati et al in [48] studied the M-
hypercyclicity considering substantially strong continuous cosine functions in
a separable complex Banach space, gave conditions the cosine function must
satisfy for it to be M-hypercyclic, and established the relationship between
M-hypercyclicity of cosine operators and M-transitivity. In our research it
was interesting to investigate M-hypercyclicity of other trigonometric func-
tions, develop the M-hypercyclicity criteria and establish M-transitivity crite-
ria. Building on the work of [40], El Berrag in [13] characterized the concept of
subspace-hypercyclicity of Cesaro operators and developed subspace Cesaro-
hypercyclic criterion and proved that it is subspace mixing. It is worth noting
that there is a link between and subspsce-hypercyclicity, subspace-transitivity
and subspace-mixing in direct sum of two operators. The above research find-
ings were not expanded to S7 @ ... & S,,. Furthermore, the study did not
take into account the subspace-hypercyclicity of the S; & ... & 5, of different
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classes of operators that individually meet the hypercyclicity condition. The
study hypercyclic and supercyclic operators has been of great interest in the
recent time because they are common in familiar classes of operators. Using a
disk, Nathan in [38] proved that T* is 2-supercyclic but not supercyclic when
T =Ty& 75 and if T' = @ ,T; is T™ is n-supercyclic and provided suffi-
cient conditions that guarantee N-supercyclicity. Ahmadi in [1] research on
conditions for supercyclicity. This played an important role in characterizing
supercyclic operators. The research further explored properties of adjoints of
composition of operators in Hardy spaces. In so doing Ahmadi [1] established
that composition operators are not supercyclic. This results was extended to
adjoints of composition operators that are contractions in Hilbert spaces be-
cause [|C3[| < [|Cyl| < 1. The finding was extended to holomorphic functions
with fixed points on the Bergman space and Dirichlet space. Moosapoor [36]
concluded that S can be subspace-hypercyclic when 9,(5*) is empty or when
9,(S*) is non empty. The findings established the fact that the emptyness
of the spectrum does not necessarily imply that the operator S is not M-
hypercyclic. Salas [44] proved that there are bilateral weighted shift operators
whose adjoints are hypercyclic but S®S5* is not even cyclic. This implies that
S or §* or both operators do not satisfy hypercyclic operators criterion. Of
interest was to determine whether there are conditions if satisfied then the
direct sum of an operator and its adjoint is subspace-hypercyclic if the oper-
ator and its adjoint are individually subspace-hypercyclic. It was proved that
hypercyclic operators are not hypornormal, which indicates that hypercyclic
operators cannot be quasinormal and, more specifically, they cannot be nor-
mal. Nathan in [39] did the characterization of hypornormal operators with
hypercyclic adjoints. These conditions were extended to hypornormal opera-
tors and it was proved that S* is hypercyclic. Nathan [39] did not generalize
the results by considering other operators that are not in this class of op-
erators. In our study, we will characterize different types of operators and
evaluate whether they or their adjoints are subspace-hypercyclic. If they are
subspace-hypercyclic, we will investigate these operators if their adjoints are
subspace-hypercyclic. Herrero in [18] investigated on the link between hyper-
clicity and hyperinvariance and proved that if S is hyperinvariant, then the
restriction of S on M is also hypercyclic. The results above motivates us to
characterize other known operators restricted to certain subspaces and deter-
mine whether there adjoints are subspace-hypercyclic. If any characterized
adjoint of any operator is subspace hypercyclic, then we will consider if the
direct sum of such an operator and its adjoint is subspace hypercyclic. Herrero
in [18] proved restriction of S on M is also hypercyclic. Salas in [39] extended
hypercyclicity property to bilateral weight shifts of adjoints, showcasing the
breadth of hypercyclic phenomena. Nathan in [38] did the characterization of
hypornormal operators whose adjoints are hypercyclic. Hypornormal operators
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are not hypercyclic but it can be attained by applying the concept of separated
sequence to obtain dense orbits. The use of separated sequence was necessary
because orbits of hypornormal operators either strictly increase or decrease in
norm or strictly decrease up-to a certain point and increase there after hence
no dense orbits. The above research did not address the topic of when an
operator and its adjoint is subspace-hypercyclic or subspace-supercyclic under
direct sum. The question on the criterion to be applied on direct sum of an
operator and its adjoint for them to be subspace-hypercyclic remains open.
Bamerni and Kilicman in [3] provided sufficient conditions for bilateral shift
to be subsapce-hypercyclic. As a result, they proved that an operator S ex-
ists such that S and S* are both subspace-hypercyclic. This was achieved by
constructing a positive weight sequence x,, that satisfies the following condi-
tions; limy_,o H;”;;?”%i = 0 and limj_, HT;;”L% = 0 Moosapoor in [31]
expanded their study to analytic Toeplitz operators and established such op-
erators cannot be multi-subspace-hypercyclic because the identity operator I
obtained from the that that T = I cannot be multi subspace-hypercyclic.

2 Preliminaries

Certain preliminaries are given here since they are important for proofs in the
results section.

Definition 2.1 (/23], Definition 2.18). Let X be a Banach space and let
S 1 X — X be bounded linear operator. We define the orbit of a vector x in
X with respect to S by Orb(S,x)={S"z:n € N'}.

Definition 2.2 (/19], Definition 2.19). A vector x in a Banach space X is
said to be hypercyclic for an operator S in B(X) if the set Orb(S,x)= {S"x :
n € N} is norm dense in the whole space. And is supercyclic if Orb(S,x) =
{cS"z:n e N,ceC} =X That is to say Orb(S,x) = {S"z:ne N} =X

Definition 2.3 ([43], Definition 2.1). A bounded linear operator T: X
—X is said to be subspace-hypercyclic for a subspace M of X if there exists a
vector x€X such that orb(T x)OM is dense in M. Such a vector x is called a
M -hypercyclic vector for T.

3 Main results

We begin by introducing the notion of numerical subspace-hypercyclicity of
operators.
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Proposition 3.1 Operators under direct sum are weakly numerically subspace-

hypercyclic if fi + ...+ fm € X{ ® ... ® X, such that Orb(Ty & ... ® T,,, x1 +
it T, it o f) DMy @ ... & M, is dense in My @ ... & M,,.

Proof. Let x1+...4+x,, be a weakly numerically subspace-hypercyclic vector of
T ®...1T,, with respect to M1 ®...d M,,. Let Uy & ... U, be a nonzero open
set of M1 ®...® M, and f1 ®...D f,,, € M7 @ ... ® M, then by definition we
have that {(fi+...+ f)(T1 & .. T,) " (x1+ ..xp) :nENINM & ... & M,
is dense in My & ... @ M,,. Thus, z; & ... ® z,, is a weakly numerically sub-
space hypercyclic vector of T} & ... ®T,, with respect to My @ ... ® M,,. Hence
T, & ... & T, is weakly numerically subspace-hypercyclic.

Lemma 3.2 Let T? be numerically subspace-hypercyclic, then T & ... TP,
18 numerically subspace-hypercyclic.

Proof. Suppose p € N is such that TP is numerically subspace-hypercyclic.
Let 21 + ... + 7, be a numerically subspace-hypercyclic vector of T} @ ... ® TP,
with respect to My & ... & M,,. Let fi + ...+ f, € M]{ & ... M, and let
Uy @ ... ® U, be nonzero open subset of M; & ... ® M,,, then we note that
meN: (it o+ )& . . &TP) 21+ ... +2) €U D ... U,  C
meN: (fi+. .. +fmOi®..oT) v+ ... +x,) €U & ... U, }. Since
meN: (fi+..+fo)(1®..0T,)(x1+...4+x,) € U1&...0U,,} is numerically
subspace-hypercyclic then it follows that {n € N : (fi + ... + f)(T} & ... ®
TP)(x1+ ... + @) € Uy @ ... ® Uy, } is numerically subspace-hypercyclic. Thus
1 + ... + x,, is numerically subspace-hypercyclic vector of T1 @ ... & T, with
respect to My @ ... & M,,.

This Lemma 3.2 lets to a stronger case in the next Theorem.

Theorem 3.3 For strongly numerically subspace-hypercyclic operators there
erists M, .., An € 0p(Th & ... ®T),) and c¢1,...,cp, € (Ry1 & ... & Ryy), then
Ty ® ... ® T, is numerically subspace-hypercyclic if S {(c1,...,cn)(AF) : k €
NIN(My & ... & M, is dense in My & ... & M,.

Proof. Let M; be nonzero closed subspaces of X and M be nonzero closed
subspaces of X*. Suppose that (A\;+...4+X,,) € §,(116...@T,,) and (c1+...+¢,) €
Riy ® ... ® R,y and if (¢; + ... + ¢,,) = 1 then there exists (z1 + ... + xy, f1 +
it fo€ (My@® ... ® M) x (Mf & ... ® M? such that (fy + ... + f)(T1 ®
TR (2 + o+ 2) = (c)(A}) + oo + () (AE) for all k € Z. Thus the
Orb(Th + ... + To,), (w1 4+ .. + ), (i + . + o) N (M1 + ... + M,) is dense
in (M + ...+ M,) and thus (T4 + ... + T,,) € B(M; @ ... ® M,,) is numerically
subspace-hypercyclic. 'We note that the operator similar to (7} & ... ® Ty,)
satisfy the same condition hence (71 ®...®T,,) is strongly numerically subspace-
hypercyclic.
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As a consequence of Theorem 3.3, next corollary we provide conditions for
diagonal operators to be numerically subspace-hypercyclic.

Corollary 3.4 For operators that are subspace-hypercyclic numerically, subspace-
hypercyclic in a stronger sense is guaranteed.

Proof. Suppose {(c1)A}) + ... + (co,)(NF) : k € Z}yn My & ... & M, is
dense in My & ... ® M, then T @ ... ® T}, is strongly numerically subspace-
hypercyclic. Therefore T7 & ... & T, is numerically subspace-hypercyclic. Now,
assume that T} & ... @ T,, is numerically subspace-hypercyclic, then there ex-
ists 1 ® ... ®x, € M| ® ... ® M, for which the closure of the numerical
or(M®...eT,),(r1®..0x,) "M & ... M, =M & ... & M,,. We note
that Orb((Ty & ... T,), (x1+ ...+ 2,) VM D ... M, = |21 ]2 | N} | +... + |2 |? |
Nk e ZN M, @ ... & M,. Hence, by setting (¢;) =| z; |?, we have,
et P [+t Jen PN k€ ZN My & ... ® M, is dense in My & ... & M,.
We now introduce the notion of subspace multidiskcyclicity. The following re-
sult characterizes the concept of subspace muiltidiskcyclity in Banach spaces.

Proposition 3.5 Let T;,i = 1,2, ...,n be subspace multidiskcyclic. Let M;
be nonzero closed subspaces of X, then there exists x; € M; such that the
subspace disk orbit of x1+ ...+ x, under Ty @ ... BT, is dense in My ®...® M,,.

Proof. Let My @& ... ® M, be a nonzero closed subset of the disk K under
& ..0T, Let Dorb((Th & ... 8 T,), (x1 + ... + x,)) N (My & ... & M,) be
nowhere dense for every (z1 + ... + z,,) € (M; & ... ® M,,), then we have that
(14 oo+ xn)k € (M @ ... & M,) such that (M, & ... & M,) is nowhere dense.
Therefore U2, ;. Dorb((Ty @ ... ® T,), (v1 + .. + 20)i) N (My & ... & M,,) is
dense in (M; @ ...® M,,). Hence (T} @ ... T,) is subspace multidiskcyclic with
respect to (M; @ ... ® M,,).

We now provide the link between subspace multidiskcyclicity and subspace
diskcyclicity.

Proposition 3.6 Let T} be subspace multidiskcyclic with respect to nonzero
closed subspace of M; of the disk K, then Ty & ... & T, is subspace diskcyclic.

Proof. Suppose n is a positive integer. Let M; @& ... ® M,, = {(z1 + ... +
Tp)1s -y (T1 + . + 25)n } be subspace diskcyclic with respect to Ty @ ... © T,
then we have

is dense in M & ... & M,,.
Suppose that n > 1 and (x1 + ... + Zp)1, .o, (T1 + oo + Tp)n € (M1 D ... © M,,)
with
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Then we have (x1+...4+x,), € M;®...® M, such that the intersection between

{intDOrb{(Th & ... ® Tp,), (w1 + ... +7,)}

and

(M1 @...& M) N{intDOrb{(T1 @ ... ®T,.), (x1+ ... + zp ) )N (M1 D ... D M,) }
is not equal to the empty set. Therefore,

{itDOrb{(T1 ® ... & T,,), (x1 + .. + x) ) N (M1 ® ... & M,)}
is equal to

{itDOrb{(T1 & ... T,,),(x1 + ... + )} N (M1 & ... & M,,) }.

In the next result we show that MS-hypercyclicity where MS denotes multi-
subspace.

Lemma 3.7 Let T; € B(X) be MS-hypercyclic with respect to M;. Then
T & ... T™ is MS-hypercyclic with respect to My & ... & M, for allm € N
andi1=1,2,...,n.

Proof. Let m = 1 and T;, be MS-hypercyclic and consider {(z; + ... +
L)1y s (L1 F20) } in Xy @... DX, such that Ui, Orb{(T1@...@T,), (x1+...+
Ty)j N (M1 ®...BM,) is dense in M; & ... M,. Suppose that (y1+...4+yn)jk =
(TF + ..+ TH)(x1 + ... + 2,); where 1 < j < iand 1 < k < m — 1.
Now, since Ui_,Orb{(Ty @ ... ® Tp), (x1 + ... + )} N (My @ ... ® M,) =
Ut<j<ii<k<m—1Orb{(IT7" & ... ® 1)), (y1 + .. + ) }je N (M1 & ... & M,,). We

=J 0t Shv>

note that

Ur<j<it<k<m—1(OTO(TT" & ... ®T), (y1 + .. + Yn)jx N (M1 & ... B M)

is equal to (M, & ... & M,,). Hence, we have that

Ulgjgi(O’l”b(Tl DS...PD Tn), (5171 + ...+ xn)]’ N (M1 D...PD Mn)

is equal to (M1 ®...® M,,). Hence, (T7"®...T") is multi subspace-hypercyclic
with respect to My & ... & M,,.

In the next result we establish the link between subspace-hypercyclicity and
MS-hypercyclicity.

Theorem 3.8 LetT1®...0T; € B(X1®...0X;) be M1 ®...® M,;-hypercyclic
then T/ & ... ® T/™ is MS-hypercyclic for allm € N
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Proof. 1f m = 1 then it follows. Now, suppose that m > 2, and let z; +
.. +x; be an My @ ... & M;-hypercyclic vector for 71 & ... & T;, then it follows
that Orb((Th & ... ® T;), (x1 + ... + x;)) N (M + ... + M;) = M+ ...+ M;. Put
1+ ..+ —1t—times=x+..4+x—1—times, Ty + ... + To — i — times =
(M@..0T) (x4 ... +2), .., T+ ...+ Ty — i —times = (T '@ .. T 1) (z +
. + ). Then = UP . Orb((T" & ... TM),(TF '@ ..o T Yz + ... + 2)
= Orb((I7"® ..o T),(x+ ... +2)UOrb((IT7"® ... TM),(Th & ... ®

D@+ +)u. uOr(Tre..eoT™), T 'e..oT Y +.. +1))
={(z+ ..+, (e..oT)(z+..+z),. . (7" e.oT" Y +..+
), (T e .. oT ) (z+..2), JNM®..&M. =0rb(Ty®...0T;), (v +
e+ X)) N (M & ... & M,

Lemma 3.9 If T & ... ® T, satisfies (My @ ... & M,,)-hypercyclicity crite-
rion, then Ty, Ts, ..., T,, satisfies My, My, ...M,-hypercyclicity criterion respec-
tively hence T1,Ts, ..., T,, are individually hypercyclic. In the next result we
establish that if (11 & ... ® T, satisfies the M -hypercyclicity criterion then each
(Tyi=1,2,...,n.

Proof. Consider the following as per the M-hypercyclicity criterion
Q). (Ty @ ... T)™(z},...,7,) — (0,0,...,00¥(z],....2,) €U, & ... B U,.

(ii). For all (v}, vs, ..., y,) € Vi®...®V,, there exists a sequence (ag, b, ...gr) C
M, & ... ® M, such that (ay, by, ...gr) — (0,0, ...,0).

and (71 & ... & T,,)" (a, by, ...gx) — (y/l,ylg, .., Y,,). Since U; and V; are dense
in My, Uy and V5 are dense in M, and U,, and V,, are dense in M, so it follows
that 11,15, ..., T,, are Mi-hypercyclic, My-hypercyclic up to M,-hypercyclic re-
spectively. Thus, 11, T5, ...T,, are individaully hypercyclic.

In the next theorem we establish that T; i = 1,2, ..., n satisfies the subspace
hypercyclicity criterion, under direct sum.

Theorem 3.10 Suppose T, ..., T, satisfies My, ..., M, -hypercyclicity crite-
rion respectively, then T1@...BT, satisfies M1®...® M, -hypercyclicity criterion.

Proof. If (y1,Yy2, ..., Yn € Do @ ... ® Dy then y; € Dy, ys € Do, ..., y, € Dy. such
that for some sequences x, — 0 and 77" xp — y1, yr — 0 and 15" yp — a2, ...,
and z; — 0 and Tz, — y,, Therefore, since (xg, Yk, ..., zx) — (0,0, ...,0) and

(Tl S¥ T2 ®..D Tn)('rlmyk? "'7Zk) — (917?/27 7yn) (1)
Finally, since T™*M C M, then

(Me..oT,)(Mi®...e M, C (M @...0M,) (2)
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Thus, by Equation 1 and Equation 2, it follows that (77 @ 1> ®...®T,,) satisfies
(M; & My & ... ® M,)-hypercyclicity criterion and thus hypercyclic.

In the next result, we establish the equivalence relationship between subspace-
transitivity and subspace-hypercyclicity.

Corollary 3.11 For the conditions holds:
(i). Cy,, ®Ch,, ®...0Cy,, is My & My @ ... ® M,-transitive.

(ii). It >0:(Cp,, ®Ct,, D..0C, ) ViD..oV)N({UL&...0U,) is not
empty.

(i11). 3t > 0 such that (Ci,, @ ... Cy, (M1 ® ... M,,) C (M, @ ... & M,)

We have Cy,, ® C,, ® ... B Cy,,, being M -transitive, M -hypercyclic and hence
hypercyclic.

Proof. Consider M@ My@®...® M, such that (V1 ®...&V,,)N(D1®...&D,,) # ()
and (D 1B...0D, ) N(U18...8U,) #0. Let a = ay+as+...+a, € (D1 P
@D )N(U1®...0U,) and b = by+by+...+b, € (Vi®...0V,)N(D1®...6D,,)
,then there exists t > 0: B(a,e) C (U1 ®...®U,) and B(b,e) C (V1 ®...aV,).
Fromb e @} ,D;and a € &} {D,1;, we have Cy , ®...®C,,, — b1+...+b, and
there exists (z,)n = (Tp1 + Tp2 + .. + Tpn)n C M1 @ ... & M, such that (z, +
Tpot ...+ Zpn) = 0and (Cy,, B...0C, ) (T +Tpot ...+ Tpp) = a1+as+...+ay,.
Consequently, there exists N € A such that || x,1 4+ Zp2 + ... + Zn [|< €, So,
| (Criy @ ... ®Ch, ) (@1 + T2+ oo+ Tp) — (a1 Fag+ .. Fay) [ S+ 4+ £ =
€. Thus, || Cp,, —a1 [[< S+ ..+ || G, —an ||< £ and || (Cy,, @ ... @
Cron ) (@1 4 oo + Tpp) — (b1 + .. +b) [|< S+ ..+ £ = e¥n > N. Therefore,
| (b1 +.c4bn)+ (T + oo+ Znn) — (@1 F a2+ ... ap) ||[=]| (Tn1+ o+ 2nn) [|< e
This implies that (b1 + ... + b,) + (p1 + .. + Tpp) € B(bye) C (Vi ® ... ® V).
So, (b1 + ... + b)) + (xp1 + .. + 2pp) C (V1 & ... & V,). On the other hand,
| (Ct,,®B...®Cy,, ) (b1t .+ bp+ X1+ Tpn) — (a1 +as+...+ay,) [|=]] Cy,, (b1)+
Crontpr —ay || 4+ 4 || Ct,,. (bn) + Ch,p Tpn — an [|[< S + ...+ £ = €. This implies
that (Cy,, ®...0Cy, )01+ ...+ by + X1 + ... + Tpn) € Bla,e) € (U1 ® ... U,)
So, (Cy,, ®...0C,, b1+ ...+ b+ xp1+ ...+ 2pp) € (U1 D ... U,). Therefore,
(bi+...4by)+ (@p1+ .o+ Tpy) € (Cr, ... 0C, ) HU16...6U,) and we obtain
(b1+...4bp)+ (Tp1+ .4+ Tnp) € (Ch, , ®..0C, ) HUL1D...0U,)N(VID...BV,)
and (Cy,, ®...®0C,,) ({U1®..0U,)N(Vi®...0V,) #0. Thus (C;,, ®C},, ®
e ®C, )My & ... M,) C(My®...8H M,), then (Cy,, B Ch,, ... 5 Cy,., )t>0
is M1 @ ... ® M,,-transitive. Let (®F_,Cy;)ier be on X7 x ... X X, and consider
Cin.- Fix Xo1 X ... X Xop ={z1+ ... + 1, € X5 X ... x X,/ limy, oo (Cy,, B ... D
Cio (@1 + .. +x,) = 0}

We now establish subspace supercyclicty in the direct sum of a finite number
of subspace-hypercyclic operators.
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Lemma 3.12 Fvery subspace-hypercyclic operator is hypercyclic with re-
gard to direct sum.

Proof. For any nonempty set Uy & ... ® U, C (M; & ... ® M,,) and V| &
. ®V, C (M &...® M,), both relatively open in (M; & ... & M,,), consider
o+ .. + 20 € V1 ®...®V,) and yo1 + ... + Yn € (Up1 @ ... ® U,). Since
Js(Th®...eT,), Mi&...&M,,x1+...4+x,) = M B...&M,, there exists n > 1
and A € C\{0} such that \(Ty ® ... 8 T,,)"(Vi® ... @ V)N (U1 @ ... & U,,) # 0
and (11 ®...0T,)(M;®...&M,) CM &...0 M,.

Theorem 3.13 Let T; € B(X), suppose that T; are all invertible and M;
are nonzero closed subspaces of X. If for all x1 + ... +x, € My & ... B M,
Js(ITT'®...0T Y, Mi®..OM,, x1+...+2,) = Mi®...OM,, then (T1®...®T,) !
15 also subspace supercyclic with respect to My & ... & M,.

Proof. By 10 T1®...®T,, is subspace-supercyclic for M, ®...&M,,, by assumption
Js(Tfl@...@Tn_l, Mi®..&M,, z1+...+x,) = Mi®...&M,. For any nonempty
sets U1 ®...0U, C Mi®...&M, and Vi&...®V,, C M, ®...& M, both relatively
open and which contains xg; + ... + Zon, Yo1 + ... + Yo, respectively, then we have
n>1and A € C\{0} such that N(T; ' @...aT; ) "(Vi&...aV,)N(U1&...6U,) #
Oand (T7' @®... 0T, )M, @ ... M,) C (M, ®...® M,). Therefore for every
Yoo+ Y2+ Y EMI D ... OM,, Js(T7'® ... 0T L, M @ ... 0 My, +
it x,) =M @ ... M,. Hence, (Ty* @ ... ® T;;! is also subspace-supercycic
for Mi ® ... ® M,,.

The following proposition provides conditions for a vector to be 1-weakly
subspace-hypercyclic.

Proposition 3.14 Fvery 1-weakly subspace supercyclic operator is cyclic.

Proof. Let x =21+ ... +x, € M1 ®..O®M,. If x =21+ ...+ x, is 1I-weakly
subspace-hypercyclic, then F.Orb((T1&...®T,), (x1+...4+x,) ) N(M1B...M,,)
is dense in My & ... ® M,,. Additionally, if 1 + ... + z,, is cyclic then the linear
span. Thus, F.Orb((T1 & ... 8 T,), (z1+... +x,)) N (M1 & ...& M,,) has a dense

linear span. Hence,

FOrb(Th & ...oT,), (x1+ ... +x,)) N (M1 B ... & M,) =M, & ... & M,

4 Open Problems

Various notions of hypercyclicity have been studied over along period of time,
however, complete characterization of this property has not been done. In
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fact, a lot of open questions remain unanswered with regard to subspace hy-
percyclicity. Most of these studies have been done in special cases of finite di-
mensional Banach spaces. It is therefore interesting to address these questions
in general Banach spaces. In this research therefore we extend an investigation
on subspace hypercyclicity by investigating different notions of the subspace
hypercyclicity. We have shown that operators under direct sum criterion are
n-subspace-hypercyclicity. Problem 1: Firstly, Characterize hypercyclicity
for power operators in Banach spaces; Problem 2: Can one develop an algo-
rithm that illustrates the relationships between the various notions of subspace
hypercyclicity; Problem 3: Are these notions of subspace hypercyclicity at-
tainable in Bergman spaces?

References

[1] M.F. Ahmadi, On supercyclic operators with adjoints having nonempty
point spectrum, International Journal of Mathematics, 23(11) (2012), 10-
21.

[2] S.I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995),
374-383.

[3] N. Bamerni A. Kilicman, Some properties of subspace-hypercyclic opera-
tors, arXiv:1406.0951v1., 2014.

[4] N. Bamerni A. Kilicman, Subspace-hypercyclic weighted shift, arXiv
preprint arXiv., 2015.

[5] F. Bayart, G. Costakis, Hypercyclic operators and rotated orbits with
polynomials phases, Journal of London Mathematics Society., 89 (2014),
78-98.

[6] F.Bayart, E. Matheron, Hyponormal operators, weighted shifts and weak
forms of hypercyclicity, Proceedings of the Edinburgh Mathematics soci-
ety, 49 (2006), 1-15.

[7] F. Bayart, S. Grivaux, Frequently hypercyclic operators, Trans. Amer.
Math. Soc. 385 (2006), 5083-5117.

[8] F. Bayart, I.Z. Ruzsa, Difference sets and frequently hypercyclic weighted
shift, Ergodic Theory Dynam. 35 (2015), 691-709.

[9] J.P. Bes, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167
(1999), 94-112.



110

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

David Wechuli, Benard Okelo, Willy Kangogo

G.D. Birkhoff, Demonstration d’un theoreme elementaire sur les fonctions
entiere, C.R. Acad.Sci.Paris, 189 (1929), 473-475.

K.L. Chan, The density of hypercyclic operators on a Hilbert space, J.
Operator Theory, 47 (2001), 131-143.

M. De la Rosa, C. Read, Ahypercyclic operator whose direct sum T'® T
is not hypercyclic, J.Operator Theory, 61 (2009), 369-380.

E.M. El Berrag, A. Tojmouati, On subspace-supercyclic semgroup, Com-
mun. Korean Math. Soc. 33 (2018), 157-164.

R. Ernst, C. Esser, Q. Menet, U-frequently hypercyclicity notion and
related weighted densities, Israel J. Math. 34 (2019), 1-12.

K.G. Erdmann, L. Gonzale, The hypercyclicity criterion for sequenses of
operators, Studia Mathematica, 157 (2003), 89-97.

K.G. Grosse-Erdmann, Frequent hypercyclic bilateral shift, Glasg. Math.
J. 61 (2019), 271-286.

J. Heo, E. Kim, SSW. Kim, ¢-frequent hypercyclicity in an algebra of
operators, Bull. Korean Math. Soc. 54 (2017), 443-454

D.A. Herrero, Hypercyclic operators and chaos, J. Operator Theory, 28
(1992), 93-103.

D.A. Herrero, C. Kitai, On invertible hypercyclic operators, Proceedings
of the American Mathematics society, 116 (1992), 873-875.

A.P. Jeneker, Comparative study of hypercyclicity and frequent hyper-
cyclicity, Internatinal journal of scientific research in Sceince and technol-
ogy, 9 (2021), 156-160.

C. Kitai, Invariant Closed sets for Linear Operators, Thesis, University of
Toronto, 1982.

A.P. Kim, H. Song, Numerically hypercyclic operators, Integral Equations
and Operator Theory, 72 (2012), 393-402.

L. Kuikui, Existence of linear hypercyclic operators on infinite-
dimensional Banach spaces, Springer Verlag, New York, 2015.

B.F. Madore R.A. Martinez-Avendano, Subspace hypercyclicity, J. Math.
Anal Appl. 373 (2011), 502-511.

G.R. MacLane, Sequences of derivatives and normal families, J. Analyse
Math. 2 (1952), 72-87.



Notions of Subspace Hypercyclicity 111

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[38]

[39]

[40]

[41]

D.L. Manuel, R. Charles, Hypercyclic operators whose direct sum 7' & T
is not hypercyclic, arViv:1001.5320v3, 2009.

V. Matache, When is a scaled contraction hypercyclic?, Unione Matem-
atica Italian, 67 (2020), 45-56.

Q.  Menet, Inverse  of  frequently  hypercyclic  operators,
J.Inst.Math.Jussieu. 87 (2021), 1-20.

Q. Menet, Inverse of U-frequently hypercyclic operators, Journal of Func-
tional Analysis, 279 (2020), 108543.

M. Moosapoor, Some criteria for subspace-hypercyclicity of Cpy-
semigroups, Aust.J. Math. Anal. Appl. 18 (2021), 231-245.

M. Moosapoor, On multi subspace-hypercyclic operators, Commun. Ko-
rean Math. Soc. 35 (2020), 1185-1192.

M. Moosapoor, On subspace-supercyclic operators, Audt. j. Math. Anal.
Appl. 17 (2020), 1-21.

M. Moosapoor, About subspace-frequently hypercyclic operators, Audt.
j- Math. Anal. Appl. 17 (2020), 107-116.

M. Moosapoor, Hereditary subspsce-hypercyclic operators, International
Journal of Pure and Applied Mathematics, 108 (2016), 621-628.

M. Moosapoor, On subspace-hypercyclicity of a sequence of operators,
Proceedings of the 47th Annual Iranian Mathematics conference, 47
(2016), 76-86.

M. Moosapoor, On point spectrum of subspace-hypercyclic operators, In-
ternational journal of Pure and Applied Mathematics, 88 (2013), 407-412.

S.F. Nathan, V.G. Miller, M.L. Miller, Hypercyclic and supercyclic cohy-
ponormal operators, AMS, 98 (2000), 1-19.

S.F. Nathan, N-Supercyclic operators, AMS, 87 (2001), 1-15.

S.F. Nathan, Countably hypercyclic oprerators, J. Operator theory, 50
(2003), 107-117.

S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.

F. Saavendra-Leon, Operator with hypercyclic Cesaro means, Stadia
Mathematica, 152 (2002), 201-215.



112

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

David Wechuli, Benard Okelo, Willy Kangogo

F. Saavendra-Leon, V. Muller, Hypercyclic sequences of operators, Acta
Mathematica, 23 (2000), 360-385.

F. Saavendra-Leon, V. Muller, Rotations of hypercyclic and supercyclic
operators, Integral Equations Operators Theory, 50 (2004), 385-391.

H.N. Salas, A hypercyclic operator whose adjoint is also hypercyclic,
American Mathemtical Society, 112 (1991), 76-90.

S. Shkarin, On numerically hypercyclic operators, arXiv:1302.2483v1,
2013.

S. Talebi, M. Moosapoor, Subspace-Chaotic Operators and Subspace-
Weakly Mixing Operators, International Journal of Pure Applied Mathe-
matics, 78 (2012), 879-885.

A. Tajmouati, A. El Bakkali, A. Toukmati, On the M-hypercyclic semi-
group, Int j. Math. Anal. 9 (2015), 417-428.

A. Tajmouati, A. El Bakkali, A. Toukmati, On the M-hypercyclicity of
cosine function on Banach spaces, Bal. Soc. Paran. Mat. 38 (2020), 133-
140.

B. Yousefi, E. Faith, Subspace transitivity of tuples of operators, Interna-
tional journal of Pure and Applied Mathematics, 101 (2015), 83-86.

X.F. Zhao, Y.L. Shu, Z.H. Zhou, Subspace-supercyclicity and common
subspace-supercyclic vector, J.East China, 1 (2012), 107-113.



