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Abstract
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1 Introduction

The Nevanlinna value distribution theory is a branch of complex analysis
mainly concentrate on the study of value distribution of solutions to the equa-
tion f(z) = a, where a ∈ C ∪ {∞} and f(z) is an entire or meromorphic
function in the Gaussian complex plane C. For the elementary definitions and
standard notations of the Nevanlinna value distribution theory such as T (r, f),
m(r, f), N(r, f), N(r, f) etc. The reader can refer ([7], [16], [17]).We shall de-
note by S(r, f), any quantity which satisfies S(r, f) = o(T (r, f)) as r → +∞
possibly outside a set I with finite linear measure. Throughout the paper
a meromorphic function always means a non-constant meromorphic function
in the open complex plane and a constant always means a complex valued
constant, unless otherwise mentioned.
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Let f and g be two non-constant meromorphic functions in the open com-
plex plane. For a ∈ C ∪ {∞} and k ∈ Z+ ∪ {∞} the set, E(a, f) = {z :
f(z)−a = 0}, denotes all those a-points of f , where each a-point of f with mul-
tiplicity k is counted k times in the set and the set, E(a, f) = {z : f(z)−a = 0},
denotes all those a-points of f , where the multiplicities are ignored. If f(z)−a
and g(z)− a assumes the same zeros with the same multiplicities, then we say
that f(z) and g(z) share the value a CM (counting multiplicity) and we have
E(a, f) = E(a, g); Suppose, if f(z) − a and g(z) − a assumes the same zeros
ignoring the multiplicities, then we say that f(z) and g(z) share the value a
IM (ignoring multiplicity) and we will have E(a, f) = E(a, g).

Nevanlinna had proved that, if two non-constant entire functions f and g
on the complex plane share four distinct finite values (ignoring multiplicity),
then f = g and this number four cannot be reduced [14, page 1]. But in 1976,
Rubel and Yang [14] considered a special case by taking g as the first derivative
of f and obtained the following result.

Theorem 1.1 [14] If f is a non-constant entire function in the finite complex
plane and if f and f ′ share two distinct values (counting multiplicity), then
f ′=f .

Thus Rubel and Yang [14] showed that a derivative is worth two values.
Since then the study of uniqueness of meromorphic functions sharing values
with their derivatives became a subject of much interest.

In 2018, Qi et al. [12] by considering the shifts, studied the value sharing
problem related to f ′(z) and f(z+ c), where c is a finite complex number and
they obtained the following result.

Theorem 1.2 [12] Let f(z) be a non-constant meromorphic function of finite
order and n ≥ 9 be an integer. If [f ′(z)]n and fn(z + c) share a(̸= 0) and ∞
CM, then f ′(z) = tf(z + c), for a constant t, that satisfies tn = 1.

In 2020, Meng and Liu [11] extended the above result by considering the
kth derivative of f and obtained the following results.

Theorem 1.3 [11] Let f be a non-constant meromorphic function of finite
order and n be a positive integer. If one of the following conditions is satisfied:

(I) [f (k)(z)]n and fn(z + c) share (1, 2), (∞, 0) and n ≥ 2k + 8;

(II) [f (k)(z)]n and fn(z + c) share (1, 2), (∞,∞) and n ≥ 2k + 7;

(III) [f (k)(z)]n and fn(z + c) share (1, 0), (∞, 0) and n ≥ 3k + 14;

then f (k)(z) = tf(z + c), for a constant t, that satisfies tn = 1.
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Corollary 1.4 [11] Let f be a non-constant entire function of finite order and
n ≥ 5 be an integer. If [f (k)(z)]n and fn(z + c) share (1, 2), then f (k)(z) =
tf(z + c), for a constant t, that satisfies tn = 1.

Meng and Liu [11] further studied the same problem by replacing the shifts
f(z + c) by q-difference, i.e., f(qz) and obtained the following results.

Theorem 1.5 [11] Let f be a non-constant meromorphic function of zero or-
der and n be a positive integer. If one of the following conditions is satisfied:

(I) [f (k)(z)]n and fn(qz) share (1, 2), (∞, 0) and n ≥ 2k + 8;

(II) [f (k)(z)]n and fn(qz) share (1, 2), (∞,∞) and n ≥ 2k + 7;

(III) [f (k)(z)]n and fn(qz) share (1, 0), (∞, 0) and n ≥ 3k + 14;

then f (k)(z) = tf(qz), for a constant t, that satisfies tn = 1.

Corollary 1.6 [11] Let f be a non-constant entire function of finite order and
n ≥ 5 be an integer. If [f (k)(z)]n and fn(qz) share (1, 2), then f (k)(z) = tf(qz),
for a constant t, that satisfies tn = 1.

In 2021 Harina P. Waghamore and Preetham N. Raj [6] has obtained the
results for the Meromorphic functions concerning their shift and differential
polynomial.

Theorem 1.7 [6] Let f be a non-constant meromorphic function of finite or-
der and n be a positive integer. If one of the following conditions holds:

(I) {P [f ]}n and fn (z + c) share (1, 2) and ∞ IM, and n ≥ 2γp + 2σ + 6;

(II) {P [f ]}n and fn (z + c) share (1, 2) and ∞ CM, and n ≥ 2γp + 2σ + 5;

(III) {P [f ]}n and fn (z + c) share (1, 0) and ∞ IM, and n ≥ 3γp + 3σ + 11;

then P [f ] = tf (z + c), for a constant t, such that tn = 1.

Corollary 1.8 [6] Let f be a non-constant entire function of finite order and
n ≥ 2γ+3 be an integer. If {P [f ]}n and fn(z+ c) share (1, 2), then f (k)(z) =
tf(z + c), for a constant t, that satisfies tn = 1.

Theorem 1.9 [6] Let f be a non-constant meromorphic function of finite or-
der and n be a positive integer. If one of the following conditions holds:

(I) {P [f ]}n and fn (qz) share (1, 2) and ∞ IM, and n ≥ 2γp + 2σ + 6;

(II) {P [f ]}n and fn (qz) share (1, 2) and ∞ CM, and n ≥ 2γp + 2σ + 5;
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(III) {P [f ]}n and fn (qz) share (1, 0) and ∞ IM, and n ≥ 3γp + 3σ + 11;

then P [f ] = tf (z + c), for a constant t, such that tn = 1.

Corollary 1.10 [6] Let f be a non-constant entire function of finite order and
n ≥ 2γ + 3 be an integer. If {P [f ]}n and fn(qz) share (1, 2), then f (k)(z) =
tf(qz), for a constant t, that satisfies tn = 1.

Question : Since (f (k))n is nothing, but a differential monomial generated by
f , it is natural to ask whether (f (k))n can be extended to a differential polyno-
mial P [f ] and their shift f (z + c) as [L (z, f)]n a linear difference polynomial
of a meromorphic (or entire) function generated by f(z).

In this paper we give an affirmative answer to the above question and
extend and improve the above mentioned theorems (1.7 - 1.10) and their
corollaries to more generalized form. Thus, by investigating the uniqueness
of meromorphic functions of the form [L(z, f)]n, [Lq(z, f)]

n, and {P [f ]}n we
obtain the following results.

2 Preliminaries

The proof of the previous theorems proceeds through a number of steps, stated
below as lemmas.

We need the following definitions and notations.

Definition 2.1 [8] Let k be a non-negative integer or infinity. For a ∈ C ∪
{∞}, we denote by Ek(a, f) the set of all a-points of f , where an a-point of
multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a, f) = Ek(a, g), then we say that f and g share the value a with the weight
k.

The definition implies that, if f and g share a value a with the weight k, then
z0 is a zero of f −a with multiplicity m(≤ k) if and only if z0 is a zero of g−a
with multiplicity m(≤ k) and z0 is a zero of f − a with multiplicity m(> k)
if and only if z0 is a zero of g − a with multiplicity n(> k), where m is not
necessarily equal to n. We write f , g share (a, k) to mean that, f , g share the
value a with the weight k. Clearly, if f , g share (a, k), then f , g share (a, p)
for any integer p, such that, 0 ≤ p < k. Also we note that, f , g share a value
a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 2.2 [10] For two meromorphic functions f , g and for a, b ∈ C ∪
{∞} and for a positive integer k,

(i) N(k(r, a; f) (N (k(r, a; f)) denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not less than k,
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(ii) N(r, a; f |g = b) (N(r, a; f |g = b)) denotes the counting function (reduced
counting function) of those a-points of f which are the b-points of g,

(iii) N(r, a, f |g ̸= b) (N(r, a; f |g ̸= b)) denotes the counting function (reduced
counting function) of those a-points of f which are not the b-points of g,

(iv) Np(r, a; f) = N(r, a; f) +
∑p

k=2 N (k(r, a; f),

(v) N2(r, a; f |g = b) (N2(r, a; f |g ̸= b)) denotes the counting function of those
a-points of f which are (are not) the b-points of g, where an a-point of f
with multiplicity m is counted m times if m ≤ 2 and twice if m > 2,

(vi) Nk)(r, a; f) (Nk)(r, a; f)) denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not greater than
k.

Definition 2.3 [1] Let f and g be two meromorphic functions such that f and
g share the value 1 IM. Let z0 be a 1-point of f of order p, and a 1-point of g of

order q. We denote, by NL

(
r, 1

f−1

)
the counting function of those 1-points of

f and g such that q < p, by N
(2

E

(
r, 1

f−1

)
the counting function of those 1-points

of f and g such that 2 ≤ q = p, by N
1)

E

(
r, 1

f−1

)
the counting function of those

1-points of f and g such that p = q = 1, and by N f>2

(
r, 1

g−1

)
the counting

functions of those 1-points of f and g such that p > q = 2, each point in
these counting functions is counted only once. In the same way, we can define

NL

(
r, 1

g−1

)
, N

(2

E

(
r, 1

g−1

)
, N g>2

(
r, 1

f−1

)
.

Definition 2.4 [9] Let n0j, n1j, ..., nkj be non-negative integers. The expres-
sion,

Mj[f ] = (f)n0j(f (1))n1j ...(f (k))nkj ,

is called a differential monomial generated by f of degree γMj
=
∑k

i=0 nij and

weight ΓMj
=
∑k

i=0(i+ 1)nij. The sum,

P [f ] =
l∑

i=1

bjMj[f ],

is called a differential polynomial generated by f of degree γp=max{γMj
: 1 ≤

j ≤ l} and weight Γp=max{ΓMj
: 1 ≤ j ≤ l}, where T (r, bj) = S(r, f) for

j = 1, 2, ..., l.

The numbers, γ
p
=min{γMj

: 1 ≤ j ≤ l} and k (the highest order of the

derivarive of f in P [f ]) are called, respectively, the lower degree and order of
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P [f ]. P [f ] is said to be homogeneous if γp = γ
p
. Also P [f ] is called a quasi

differential polynomial generated by f if instead of assuming T (r, bj) = S(r, f)
we just assume that, m(r, bj) = S(r, f) for the co-efficients bj(j = 1, 2, ..., l).
We denote, by σ=max{ΓMj

− γMj
: 1 ≤ j ≤ l}=max{n1j + 2n2j + ... + knkj :

1 ≤ j ≤ l}.

Definition 2.5 [5] If f(z) is a non-constant meromorphic function of finite
order, then

L (z, f) = bkf(z + ck) + ...+ b1f(z + c1) + b0f(z) =
k∑

j=0

bjf(z + cj), (1)

is called linear difference polynomial of f(z), where k ∈ N ∪ {0} and aj and
cj’s are complex constants with atleast one aj’s are non-zero.
For a non-zero complex constant q and a meromorphic function f , the q−shift
and q−difference operators are defined, respectively by f (qz) and ∆q = f(qz)−
f(z). Here also we generalize these operators as follows.

Lq (z, f) = brf(qjz + cr) + ...+ b1f(q1z + c1) + b0f(qz) =
r∑

j=0

bjf(qjz + cj),

(2)

where r is a non-negative integer, and qj, bj, dj’s are complex constants with
atleast one of bj is non-zero.

Let F and G be two non-constant meromorphic functions, we shall denote by
Ψ the following function.

Ψ =

(
F

′′

F ′ −
2F

′

F − 1

)
−
(
G

′′

G′ −
2G

′

G− 1

)
. (3)

Lemma 2.6 [2] Let F , G be two non-constant meromorphic functions. If F ,
G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞ and Ψ ̸= 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F )+N(r,G)+N∗(r,∞;F,G)+S(r, F )+S(r,G),

where N∗(r,∞;F,G) denotes the reduced counting function of those poles of
F whose multiplicities differ from the multiplicities of the corresponding poles
of G.

Lemma 2.7 [15] Let f be a non-constant meromorphic function and let a1, a2, ..., an
be finite complex numbers, an ̸= 0. Then

T (r, anf
n + ...+ a2f

2 + a1f + a0) = nT (r, f) + S(r, f).
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Lemma 2.8 [4] Let f be a meromorphic function of finite order ρ(f) and let
c be a non-zero complex constant. Then

T (r, f(z + c)) = T (r, f(z)) +O(rρ(f)−1+ϵ) +O(logr),

for an arbitrary ϵ > 0.

Lemma 2.9 [18] Suppose that two non-constant meromorphic functions F
and G share 1 and ∞ IM. Let Ψ be given as in (2.1). If Ψ ̸= 0, then

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G).

Lemma 2.10 [19] Let f be a zero order meromorphic function and q ∈ C\{0}.
Then

T (r, f(qz)) = (1 +O(1))T (r, f(z)),

N(r, f(qz)) = (1 +O(1))T (r, f(z)),

on a set of lower logarithmic density 1.

Lemma 2.11 [3] Let f be a non-constant meromorphic function and P [f ] be
a differential polynomial in f . Then

m

(
r,
P [f ]

fγp

)
≤ (γp − γ

p
)m

(
r,

1

f

)
+ S(r, f),

m

(
r,
P [f ]

f
γ
p

)
≤ (γp − γ

p
)m (r, f) + S(r, f),

N

(
r,
P [f ]

fγp

)
≤ (γp − γ

p
)N

(
r,

1

f

)
+ σ

[
N(r, f) +N

(
r,

1

f

)]
+ S(r, f),

N (r, P [f ]) ≤ γpN(r, f) + σN(r, f) + S(r, f),

T (r, P [f ]) ≤ γpT (r, f) + σN(r, f) + S(r, f),

where σ=max {n1j + 2n2j + 3n3j + ...+ knkj ; 1 ≤ j ≤ l}.

Lemma 2.12 Let f be a non-constant meromorphic function having zeros of
multiplicity at least s, where s, n be a positive integers, if F = {L(z, f)}n, where
c is a finite complex number and G = {P [f ]}n, where P [f ] is a differential
polynomial, then F ·G ̸= 1.

Proof 2.12. On the contrary, suppose F ·G = 1,
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i.e., {L(z, f)}n{P [f ]}n = 1.

From the above, it is clear that the function f can’t have any zeros and poles.
Therefore

N

(
r,

1

f

)
= S(r, f) = N(r, f).

So by the first fundamental theorem of Nevanlinna and Lemma 2.6, we have,

(n+ nγp)T (r, f) = T

(
r,

1

[L(z, f)]nfnγp

)
+ S(r, f)

≤ T

(
r,
{P [f ]}n

fnγp

)
+ S(r, f)

≤ nT

(
r,
{P [f ]}
fγp

)
+ S(r, f)

≤ n

[
m

(
r,
P [f ]

fγp

)
+N

(
r,
P [f ]

fγp

)]
+ S(r, f)

≤ n
[
(γp − γ

p
)T (r, f)

]
+ nσ

[
N(r, f) +N

(
r,

1

f

)]
+ S(r, f)

(n+ nγp)T (r, f) ≤ n
[
(γp − γ

p
)T (r, f)

]
+ S(r, f)

(n+ nγ
p
)T (r, f) ≤ S(r, f),

which is a contradiction. Thus F · G ̸= 1. This completes the proof of the
lemma 2.12.

Lemma 2.13 Let f be a non-constant meromorphic function having zeros of
multiplicity at least s, where s, n be a positive integers. If F = [Lq (z, f)]

n,
where c is a finite complex number and G = {P [f ]}n, where P [f ] is a differ-
ential polynomial, then F ·G ̸= 1.

Proof 2.13. In a similar manner we can prove the following Lemma 2.13.

3 Main results

Theorem 3.1 Let f be a non-constant meromorphic function having zeros of
multiplicity at least s with finite order, where s, n are positive integers. If one
of the following conditions holds:

(I) {P [f ]}n and [L(z, f)]n share (1, 2) and ∞ IM, and

n ≥ 1

s(t+ 1)
(2γp + 2σ ++4t+ 6);
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(II) {P [f ]}n and [L(z, f)]n share (1, 2) and ∞ CM, and

n ≥ 1

s(t+ 1)
(2γp + 2σ ++4t+ 5);

(III) {P [f ]}n and [L(z, f)]n share (1, 0) and ∞ IM, and

n ≥ 1

s(t+ 1)
(3γp + 3σ + 9t+ 11);

then P [f ] = tL(z, f), for a constant t, such that tn = 1.

Proof of Theorem 3.1. Let us consider,

F = [L (z, f)]n and G = {P [f ]}n. (4)

(I). Suppose {P [f ]}n and [L (z, f)]n share (1, 2) & ∞ IM, and

n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6). Then it follows directly from the assump-

tions of the theorem, that F and G share (1, 2) & ∞ IM. Let Ψ be defined as
in (3). It can be easily seen that the possible poles of Ψ occur at,

(i) multiple zeros of F and G

(ii) those 1-points of F and G whose multiplicities are different

(iii) those poles of F and G whose multiplicities are different

(iv) zeros of F ′ and G′ which are not the zeros of F (F − 1) and G(G − 1)
respectively.

We claim Ψ = 0, on the contrary if Ψ ̸= 0, then it follows from Lemma 2.6
that,

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G) + S(r, F )+

S(r,G). (5)

Using Lemma 2.7 and Lemma 2.8, we can write

T (r, F ) = nT (r, L (z, f)) + S(r, f)

= n (t+ 1)T (r, f(z)) +O(rρ(f)−1+ϵ) + S(r, f). (6)

We obviously have the following,

N2

(
r,

1

F

)
= 2N

(
r,

1

L (z, f)

)
≤ 2

(t+ 1)

s
T (r, L (z, f)) + S(r, f)

≤ 2
(t+ 1)

s
T (r, f) +O(rρ(f)−1+ϵ) + S(r, f),

(7)
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N(r, F ) = N(r, L (z, f)) ≤ 1

s
T (r, L (z, f)) ≤ (t+ 1)

s
T (r, f) +O(rρ(f)−1+ϵ),

(8)

N∗(r,∞;F,G) ≤ N(r, F ) ≤ 1

s
T (r, L (z, f)) ≤ (t+ 1)

s
T (r, f) +O(rρ(f)−1+ϵ)+

S(r, f). (9)

Since E(∞, f (k)) = E(∞, f), we have

N(r,G) = N(r, P [f ]) = N(r, f). (10)

From Lemma 2.11, we have

N2

(
r,

1

G

)
= 2N

(
r,

1

P [f ]

)
≤ 2

s
T (r, P [f ])+S(r, f) ≤ 2

(γp + σ)

s
T (r, f)+S(r, f).

(11)
By combining (5) to (12), we deduce that

(n(t+ 1)−
(
2γp + 2σ + 5

s

)
T (r, f) ≤ S(r, f), (12)

which contradicts that n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6). Thus, we have Ψ = 0

and hence
F

′′

F ′ −
2F

′

F − 1
=

G
′′

G′ −
2G

′

G− 1
. (13)

By integrating the above equation twice on both sides, we get

1

F − 1
=

C

G− 1
+D, (14)

where C ̸= 0 and D are constants. From (14), we have

G =
(D − C)F + (C −D − 1)

DF − (D + 1)
. (15)

Now, we have the following three cases:
Case 1. Suppose that D ̸= 0,−1. Then, from (15), we have

N

(
r,

1

F − D+1
D

)
= N(r,G). (16)

From the Second fundamental theorem, Lemma 2.8 and (11), we have

n(t+ 1)T (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − D+1
D

)
+

S(r, f)

≤ (2t+ 3)

s
T (r, f) +O(rρ(f)−1+ϵ) + S(r, f),

(17)
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which contradicts n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6).

Case 2. Suppose D = −1. From (15), we have

G =
(C + 1)F − C

F
. (18)

(i) If C ̸= −1, from (18), we get

N

(
r,

1

F − C
C+1

)
= N

(
r,

1

G

)
. (19)

From Second fundamental theorem, Lemma 2.8 and Lemma 2.11, we get

n(t+ 1)T (r, f) = T (r, F ) + S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − C
C+1

)
+ S(r, f)

≤ N(r, L (z, f)) +N

(
r,

1

L (z, f)

)
+N

(
r,

1

P [f ]

)
+ S(r, f)

≤
(
2(t+ 1)

s
+

γp + σ

s

)
T (r, f) +O(rρ(f)−1+ϵ) + S(r, f),

(20)

which contradicts with n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6).

(ii) If C = −1, then from (18), we get F ·G = 1,
i.e.,

[L (z, f)]n{P [f ]}n = 1, (21)

which is a contradiction from Lemma 2.12.
Case 3. Suppose that D = 0. From (15), we have

G = CF − (C − 1). (22)

If C ̸= 1, from (22), we have

N

(
r,

1

F − C−1
C

)
= N

(
r,

1

G

)
. (23)

Then from the Second fundamental theorem, Lemma 2.8 and Lemma 2.11, we



58 Harina P W and Roopa M.

have

n(t+ 1)T (r, f) = T (r, F ) + S(r, f)

≤ N(r, F ) +N(r,
1

F
) +N

(
r,

1

F − C−1
C

)
+ S(r, f)

≤ N(r, L (z, f)) +N

(
r,

1

L (z, f)

)
+N

(
r,

1

P [f ]

)
+ S(r, f)

≤
(
2(t+ 1)

s
+

γp + σ

s

)
T (r, f) +O(rρ(f)−1+ϵ) + S(r, f),

(24)

which again contradicts n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6). Hence, C = 1. Thus

From (22), we have F = G, i.e.,

Ln(z, f) = {P [f ]}n.

Hence P [f ] = tL (z, f) , for a constant t, such that tn = 1. This proves (I) of
Theorem 3.1.
(II). Suppose {P [f ]}n and [L(z, f)]n share (1, 2) & ∞ CM and

n ≥ 1

s(t+ 1)
(2γp + 2σ + 3t+ 5). Then it follows directly from the assump-

tions of the theorem, that F and G share (1, 2) & ∞ CM. Let Ψ be defined as
in (3). We claim Ψ = 0, on the contrary if Ψ ̸= 0, then from Lemma 2.6, we
have

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)+

S(r, F ) + S(r,G). (25)

It is obvious that,

N∗(r,∞;F,G) = 0. (26)

By combining (25), (7), (8), (9), (11), (12), and (26), we have

(n(t+ 1)−
(
2γp + 2σ + 3t+ 4

s

)
T (r, f) ≤ O(rρ(f)−1+ϵ) + S(r, f), (27)

which contradicts with, n ≥ 1

s(t+ 1)
(2γp + 2σ + 3t+ 5). Hence, we get Ψ =

0. Now, by following the steps of the proof of (I) of the Theorem 3.1, we can
get the proof of (II) of Theorem 3.1.
(III). Suppose {P [f ]}n and [L(z, f)]n share 1, ∞ CM and
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n ≥ 1

s(t+ 1)
(3γp + 3σ + 9t+ 11). Then it follows directly from the assump-

tions of the theorem, that F and G share 1, ∞ CM. Let Ψ be defined as in
(3). We claim Ψ = 0, on the contrary if Ψ ̸= 0, then from Lemma 2.9, we have

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G). (28)

Since,

N
1)
E

(
r,

1

F − 1

)
+2N

(2
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1). (29)

Therefore, from (28) and (29), we get

T (r, F ) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+

NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G). (30)

From Lemma 2.7 and Lemma 2.8, we have,

T (r, F ) = nT (r, L(z, f)) + S(r, f) = n(t+ 1)T (r, f) +O(rρ(f)−1+ϵ) + S(r, f).
(31)

We obviously have,

NL

(
r,

1

F − 1

)
≤ N

(
r,

F

F ′

)
≤ N

(
r,
F ′

F

)
+ S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+ S(r, f)

≤ N(r, L(z, f)) +N

(
r,

1

L(z, f)

)
+ S(r, f)

≤ 2(t+ 1)

s
T (r, f) +O(rρ(f)−1+ϵ) + S(r, f),

(32)
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NL

(
r,

1

G− 1

)
≤ N

(
r,

G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, f)

≤ N(r,G) +N

(
r,

1

G

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1

P [f ]

)
+ S(r, f)

≤
(
1

s
+

γp + σ

s

)
T (r, f) + S(r, f). (33)

By combining (30), (8), (9), (12), (31), (32), and (33), we get

(n(t+ 1)−
(
3γp + 3σ + 9t+ 10

s

)
T (r, f) ≤ O(rρ(f)−1+ϵ) + S(r, f), (34)

which contradicts with n ≥ 1

s(t+ 1)
(3γp + 3σ + 9t+ 11). Now, by following

the steps of the proof of (I) of Theorem 3.1, we can get the proof of (III) of
Theorem 3.1. This completes the proof of Theorem 3.1.

Corollary 3.2 Let f be a non-constant entire function having zeros of multi-

plicity atleast s of finite order and n ≥ 1

s(t+ 1)
(2γp + 2t+ 3) be an integer.

If {P [f ]}n and [L (z, f)]n share (1, 2), then {P [f ]} = tL (z, f), for a constant
t, such that tn = 1.

Proof of Corollary 3.2

Suppose {P [f ]}n and Ln(z, f) share (1, 2) and n ≥ 1

s(t+ 1)
(2γp + 2σ + 2t+ 3).

Then it follows directly from the assumptions of the theorem that F and G
share (1, 2). Let Ψ be defined as in (3). We claim Ψ = 0, on the contrary if
Ψ ̸= 0, then it follows from Lemma 2.6 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G) + S(r, F )+

S(r,G).

Since f is a non-constant entire function, we have N(r, f) = S(r, f). Hence,
the above equation reduces to

n(t+ 1)T (r, f) ≤ 2(t+ 1)

s
T (r, f) +

2γp
s

T (r, f) +O(rρ(f)−1+ϵ) + S(r, f).

Thus,

(n(t+ 1)−
(
2γp + 2t+ 2

s

)
T (r, f) ≤ S(r, f), (35)
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which contradicts with n ≥ 1

s(t+ 1)
(2γp + 2t+ 3). Now, by following the

steps of the proof of (I) of Theorem 3.1, we can easily get the proof of Corollary
3.2.

Theorem 3.3 Let f be a non-constant meromorphic function having zeros
of multiplicity s with zero order and s, n are positive integers. If one of the
following conditions holds:

(I) {P [f ]}n and [Lq (z, f)]
n share (1, 2) and ∞ IM, and

n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6);

(II) {P [f ]}n and [Lq (z, f)]
n share (1, 2) and ∞ CM, and

n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 5);

(III) {P [f ]}n and [Lq (z, f)]
n share (1, 0) and ∞ IM, and

n ≥ 1

s(t+ 1)
(3γp + 3σ + 9t+ 11);

then P [f ] = tLq (z, f), for a constant t, such that tn = 1.

Proof of theorem 3.3
Let us consider,

F = [Lq(z, f)]
n and G = {P [f ]}n (36)

(I). Suppose {P [f ]}n and [Lq(z, f)]
n share (1, 2) & ∞ IM and

n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6). Then it follows directly from the assump-

tions of the theorem that F and G share (1, 2) & ∞ IM. We claim Ψ = 0, on
the contrary if Ψ ̸= 0, then it follows from Lemma 2.6 that,

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)+

S(r, F ) + S(r,G). (37)

Using Lemma 2.7 and Lemma 2.10, we can write

T (r, F ) = n(t+ 1)T (r, Lq(z, f)) + S(r, f) = n(t+ 1)T (r, f) + S(r, f), (38)

N(r, F ) = N(r, Lq(z, f)) = (t+1)N(r, f(z))+S(r, f) ≤ (t+ 1)

s
T (r, f)+S(r, f).

(39)
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We obviously have the following,

N2

(
r,

1

F

)
= 2N

(
r,

1

Lq(z, f)

)
≤ 2

(t+ 1)

s
T (r, Lq(z, f)) + S(r, f)

≤ 2
(t+ 1)

s
T (r, f) + S(r, f), (40)

N∗(r,∞;F,G) ≤ N(r, F ) ≤ (t+ 1)

s
T (r, Lq(z, f)) ≤

(t+ 1)

s
T (r, f) + S(r, f).

(41)

Since E(∞, f (k)) = E(∞, f), we have

N(r,G) = N(r, P [f ]) = N(r, f). (42)

From Lemma 2.11, we have

N2

(
r,

1

G

)
= 2N

(
r,

1

P [f ]

)
≤ 2

s
T (r, P [f ]) + S(r, f)

≤ 2
(γp + σ)

s
T (r, f) + S(r, f). (43)

By combining (37) to (43), we deduce,

(n(t+ 1)−
(
2γp + 2σ + 4t+ 5

s

)
T (r, f) ≤ S(r, f), (44)

which contradicts that n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6). Thus, we have Ψ = 0

and hence,
F

′′

F ′ −
2F

′

F − 1
=

G
′′

G′ −
2G

′

G− 1
.

By integrating the above equation twice on both sides, we get

1

F − 1
=

C

G− 1
+D, (45)

where C ̸= 0 and D are constants. From (45), we have

G =
(D − C)F + (C −D − 1)

DF − (D + 1)
. (46)

Now, we have the following three cases:
Case 1. Suppose that D ̸= 0,−1. Then, from (46), we have

N

(
r,

1

F − D+1
D

)
= N(r,G). (47)
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From the second fundamental theorem, Lemma 2.10 and (11), we have

n(t+ 1)T (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r,

1

F

)
+

N

(
r,

1

F − D+1
D

)
+ S(r, f)

≤ (2t+ 3)

s
T (r, f) + S(r, f), (48)

which contradicts with n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6).

Case 2. Suppose D = −1. From (46), we have

G =
(C + 1)F − C

F
. (49)

(i) If C ̸= −1, then from (49), we get

N

(
r,

1

F − C
C+1

)
= N

(
r,

1

G

)
. (50)

From Second fundamental theorem, Lemma 2.10 and Lemma 2.11, we get

n(t+ 1)T (r, f) = T (r, F ) + S(r, f) ≤ N(r, F ) +N

(
r,

1

F

)
+N

(
r,

1

F − C
C+1

)
+

S(r, f)

≤ N(r, [Lq(z, f)]
n) +N

(
r,

1

[Lq(z, f)]n

)
+

N

(
r,

1

P [f ]

)
+ S(r, f)

n(t+ 1)T (r, f) ≤ (γp + σ + 2t+ 3)

s
T (r, f) + S(r, f),

(51)

which contradicts with n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6).

(ii) If C = −1 and from (49) we get F ·G = 1,
i.e.,

[Lq(z, f)]
n{P [f ]}n = 1, (52)

which is a contradiction from Lemma 2.13.
Case 3. Suppose that D = 0. From (46), we have

G = CF − (C − 1). (53)
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If C ̸= 1, then from (49), we have

N

(
r,

1

F − C−1
C

)
= N

(
r,

1

G

)
. (54)

Then from the Second fundamental theorem, Lemma 2.10 and Lemma 2.11,
we have

n(t+ 1)T (r, f) = (t+ 1)T (r, F ) + S(r, f) ≤ N(r, F ) +N(r,
1

F
) +N

(
r,

1

F − C−1
C

)
+ S(r, f)

≤ N(r, [Lq(z, f)]
n) +N

(
r,

1

[Lq(z, f)]n

)
+N

(
r,

1

P [f ]

)
+ S(r, f),

i.e.,

n(t+ 1)T (r, f) ≤ (2t+ γp + σ + 2)

s
T (r, f) + S(r, f), (55)

which again contradicts n ≥ 1

s(t+ 1)
(2γp + 2σ + 4t+ 6). Hence, C = 1. Thus

From (22), we have F = G,i.e.,

[Lq(z, f)]
n = {P [f ]}n.

Hence P [f ] = tLq (z, f) , for a constant t, such that tn = 1. This proves (I) of
Theorem 3.3.
(II). Suppose {P [f ]}n and [Lq(z, f)]

n share (1, 2) & ∞ CM and

n ≥ 1

t+ 1
(2γp + 2σ + 3t+ 5). Then it follows directly from the assumptions

of the theorem, that F and G share (1, 2) & ∞ CM. Let Ψ be defined as in
(3). We claim Ψ = 0, on the contrary if Ψ ̸= 0, then from Lemma 2.6, we have

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)+

S(r, F ) + S(r,G). (56)

It is obvious that,
N∗(r,∞;F,G) = 0. (57)

By combining (56), (58), (39), (40), (42), (43) and (57), we have

(n(t+ 1)−
(
2γp + 2σ + 3t+ 4

s

)
T (r, f) ≤ S(r, f), (58)
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which contradicts with n ≥ 1

s(t+ 1)
(2γp + 2σ + 3t+ 5). Hence, we get, Ψ =

0. Now, by following the steps of the proof of (I) of the Theorem 3.3, we can
get the proof of (II) of Theorem 3.3.
(III). Suppose {P [f ]}n and [Lq(z, f)]

n share 1, ∞ CM and

n ≥ 1

s(t+ 1)
(3γp + 3σ + 9t+ 11). Then it follows directly from the assump-

tions of the theorem, that F and G share 1, ∞ CM. Let Ψ be defined as in
(3). We claim Ψ = 0, on the contrary if Ψ ̸= 0, then from Lemma 2.9, we have

T (r, F ) + T (r,G) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G). (59)

Since,

N
1)
E

(
r,

1

F − 1

)
+2N

(2
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1). (60)

Therefore, from (59) and (60), we get

T (r, F ) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+

NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G). (61)

From Lemma 2.7 and Lemma 2.10, we have

T (r, F ) = n (t+ 1)T (r, Lq(z, f)) + S(r, f) = n (t+ 1)T (r, f) + S(r, f). (62)

We obviously have,

NL

(
r,

1

F − 1

)
≤ N

(
r,

F

F ′

)
≤ N

(
r,
F ′

F

)
+ S(r, f)

≤ N(r, F ) +N

(
r,

1

F

)
+ S(r, f)

≤ N(r, [Lq(z, f)]
n) +N

(
r,

1

[Lq(z, f)]n

)
+ S(r, f)

≤ 2

(
t+ 1

s

)
T (r, f) + S(r, f), (63)
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NL

(
r,

1

G− 1

)
≤ N

(
r,

G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, f)

≤ N(r,G) +N

(
r,

1

G

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1

P [f ]

)
+ S(r, f)

≤
(
γp + σ + 1

s

)
T (r, f) + S(r, f). (64)

By combining (61),(38), (39), (40), (43), (63) and (64), we get

(n (t+ 1)−
(
3γp + 3σ + 9t+ 10

s

)
T (r, f) ≤ S(r, f), (65)

which contradicts with n ≥ 1

s(t+ 1)
(3γp + 3σ + 9t+ 11). Now, by following

the steps of the proof of (I) of Theorem 3.3., we can get the proof of (III) of
Theorem 3.3. This completes the proof of Theorem 3.3.

Corollary 3.4 Let f be a non-constant entire function having zeros of mul-

tiplicity s with zero order and n ≥ 1

s(t+ 1)
(2γp + 2t+ 3) be an integer. If

{P [f ]}n and [Lq (z, f)]
n share (1, 2), then {P [f ]} = tLq (z, f), for a constant

t, such that tn = 1.

Proof of Corollary 3.4 Suppose {P [f ]}n and [Lq(z, f)]
n share (1, 2) and

n ≥ 1

s(t+ 1)
(2γp + 2t+ 3). Then it follows directly from the assumptions of

the theorem, that F and G share (1, 2). Let Ψ be defined as in (3). We claim
Ψ = 0, on the contrary if Ψ ̸= 0, then it follows from Lemma 2.6 that

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N(r, F ) +N(r,G) +N∗(r,∞;F,G)+

S(r, F ) + S(r,G).

Since f is a non-constant entire function, we have N(r, f) = S(r, f). Hence,
the above equation reduces to,

n (t+ 1)T (r, f) ≤ 2
(t+ 1)

s
T (r, f) + 2γpT (r, f) + S(r, f),

Thus,

(n (t+ 1)− 2

(
γp + 2t+ 2

s

)
T (r, f) ≤ S(r, f), (66)
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which contradicts with n ≥ 1

s(t+ 1)
(2γp + 2t+ 3). Now, by following the

steps of the proof of (I) of Theorem 3.3, we will easily get the proof of Corollary
3.4.
Remarks. If suppose P [f ] = f (k), then we get, (γp = γM1 = 1), (Γp = ΓM1 =
(k + 1)), (t = 0, s = 1), (σ = ΓM1 − γM1 = k) and thus,

(i). Theorem 3.1 reduces to Theorem 1.7,

(ii). Corollary 3.2 reduces to Corollary 1.8,

(iii). Theorem 3.3 reduces to Theorem 1.9,

(iv). Corollary 3.4 reduces to Corollary 1.10.

4 Open Problem

1. What happens if we replace F = f(z + c) by q− difference operator
∆u

q,cf(z) in Theorem 3.1 and Theorem 3.3, where

∆u
q,cf = ∆n−1

q,c (∆q,cf(z)) =
u∑

r=0

(−1)r
(
u
r

)
f(qu−rz + (u − r)c), where q(̸=

0), c ∈ C, u(> 1) ∈ N, 0 ≤ r ≤ u ?

2. What happens to the condition n if we use relaxed sharing which is
weaker than weakly weighted sharing?.
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