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Abstract

In this paper, we study the equitable chromatic number
of comb product graphs formed by combining standard graph
classes. Specifically, we determine the comb product of path
with path, path with complete, complete with path, complete
with complete, cycle with cycle, cycle with path, path with cy-
cle.
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1 Introduction

Graph coloring is a fundamental area in graph theory with applications in
scheduling, load balancing, and resource allocation. Among its variations, eq-
uitable coloring is especially significant when fairness or balanced distribution
is required. An equitable coloring of a graph M is a proper vertex coloring in
which the sizes of any two color classes differ by at most one. Formally, it is
a partition of the vertex set V (M) into k independent sets V1, V2, . . . , Vk such
that ||Vi| − |Vj|| ≤ 1 for all i, j. The smallest integer k is called the equitable
chromatic number, denoted χ=(M). This concept was introduced by Meyer [8],
who proved that for any connected graph M other than a complete graph or
an odd cycle, we have χ=(M) ≤ ∆(M), where ∆(M) is the maximum degree.
A more general and foundational result is the Hajnal–Szemerédi Theorem [4],
which states that every graph M with maximum degree ∆ admits an equitable
coloring with at most ∆ + 1 colors, i.e., χ=(M) ≤ ∆ + 1. Several refinements



84 Barani M

and extensions have been established since then. For instance, Chen, Lih, and
Wu [2] proved that every tree is equitably 2-colorable. Kierstead and Kos-
tochka [7] extended the Hajnal–Szemerédi result to list colorings. Yap [11]
showed that for planar graphs with ∆ ≥ 8, the equitable chromatic number
satisfies χ=(M) ≤ ∆. Hanna Furma´nczyk [5] discussed vairous graph prod-
ucts. The comb product or rooted product, originally introduced by Godsil
and McKay [3], involves attaching a rooted graph H to every vertex of a base
graph M , and serves as a fertile structure for studying equitable coloring and
related graph invariants.

2 Preliminaries

A Comb Product [3], [1] also called as Rooted Product with a graph T
′

and a rooted graph E
′

denoted by T
′ ◦E ′

is a graph formed by taking
∣∣V (T

′
)
∣∣

copies of E
′
and grafting the m-th copy of E

′
at the vertex i to the m-th vertex

of T
′
.

A Path [10], [9] is a finite sequence of vertices and edges that have distinct
end vertices.

A Cycle [10], [9] is a finite sequence of vertices and edges that have common
end vertices.

A Complete Graph [10], [6] is a graph in which each vertex is adjacent
to all other vertices.

Proposition 2.1: For any graph M , χ=(M) ≥ χ(M) [8]

3 Main results

Theorem 3.1. The equitable coloring of comb product of path Pq with path
graph Pq′ is given by,

χ=[Pq ◦ Pq′ ] = 2 ; ∀q, q′ ≥ 2

Proof. From the definition of comb product, the vertex is defined as follows

V [Pq ◦ Pq′ ] = {bd, bdd′ ; 1 ≤ d ≤ q, 1 ≤ d′ ≤ q′}

where bd be the nodes of Path Graph (Pq) and bdd′ be the nodes of Path
Graph (Pq′). Explicitly, by definition bd and bd1 have same color since both
are interlinked. We consider bd1.

For 1 ≤ d ≤ q, 1 ≤ d′ ≤ q′. In the vertex set bdd′ , if q ≡ 1 mod 2, we
rerun the color sequence (1, 2). Likewise, if q ≡ 0(mod2), we rerun the color
sequence (2, 1) to the vertices bdd′ respectively. An illustration is given in
Figure 1.
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Figure 1: An example of P5 ◦ P4

Hence, if q is even, then each color cropped q times. If q is odd and q′ is

even, then the colors cropped
⌈
qq′

2

⌉
each. And if q is odd and q′ is odd, then

the color 1 cropped
⌊
qq′

2

⌋
+ 1 and color 2 cropped

⌊
qq′

2

⌋
. And the absolute

difference between any two color class is either 0 or 1.
Here by, the above coloring strategy gives the upper bound

χ=(Pq ◦ Pq′) ≤ 2, ∀q, q′ ≥ 2 (1)

By Proposition 2.1, we have

χ=(Pq ◦ Pq′) ≥ χ(Pq ◦ Pq′) = 2, ∀q, q′ ≥ 2

Therefore the lower bound is given by

χ=(Pq ◦ Pq′) ≥ 2, ∀q, q′ ≥ 2 (2)

From (1)&(2), we get

χ=(Pq ◦ Pq′) = 2, ∀q, q′ ≥ 2

Theorem 3.2. The equitable coloring of comb product of path Pq with complete
graph Kt is given by,

χ=[Pq ◦Kt] = t ; ∀q ≥ 2, t ≥ 4

Proof. From the definition of comb product, the vertex is defined as follows

V [Pq ◦Kt] = {bd, hnn′ ; 1 ≤ d, n ≤ q, 1 ≤ n′ ≤ t}

where bd be the nodes of Path Graph (Pq) and hnn′ be the nodes of Complete
Graph (Kt).

Explicitly, by definition bd and hn1 have same color since both are inter-
linked. We consider hn1.
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Figure 2: An example of P5 ◦K4

For 1 ≤ n ≤ q, 1 ≤ n′ ≤ t. In the vertex set hnn′ , if n ≡ 1(mod2), we
rerun the color sequence (1, 2,..., t) to the vertices. Likewise, if n ≡ 0(mod2),
we rerun the color sequence (2, 3, 4,...,t, 1) to the vertices hnn′ respectively.
An illustration is given in Figure 3.

Hence, each color cropped q times. And the absolute difference between
any two color class is either 0 or 1.
Here by, the above coloring strategy gives the upper bound

χ=(Pq ◦Kt) ≤ t, ∀q ≥ 2, t ≥ 4 (3)

By Proposition 2.1, we have

χ=(Pq ◦Kt) ≥ χ(Pq ◦Kt) = t, ∀q ≥ 2, t ≥ 4

Therefore, the lower bound is given by

χ=(Pq ◦Kt) ≥ t, ∀q ≥ 2, t ≥ 4 (4)

From (3)&(4), we get

χ=(Pq ◦Kt) = t, ∀q ≥ 2, t ≥ 4

Theorem 3.3. The equitable coloring of comb product of complete Kt with
path graph Pq is given by,

χ=[Kt ◦ Pq] = t ; ∀q ≥ 2, t ≥ 3

Proof. From the definition of comb product, the vertex is defined as follows

V [Kt ◦ Pq] = {hn, bdd′ ; 1 ≤ n, d ≤ t, 1 ≤ d′ ≤ q}

where hn be the nodes of Complete Graph (Kt) and bdd′ be the nodes of Path
Graph (Pq).

Explicitly, by definition hn and bd1 have same color since both are inter-
linked. We consider bd1.

For 1 ≤ d ≤ t, 1 ≤ d′ ≤ q. If d′ ≡ 1( mod 2) we assign the color sequence (1,
2,..., t) to the vertices bdd′ ; if d′ ≡ 0(mod2) we assign the color sequence (2, 3,
4,..., t, 1) to bdd′ . Each color is cropped q times. And the absolute difference
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between any two color class is either 0 or 1.
Here by, the above coloring strategy gives the upper bound

χ=(Kt ◦ Pq) ≤ t, ∀q ≥ 2, t ≥ 3 (5)

By Proposition 2.1, we have

χ=(Kt ◦ Pq) ≥ χ(Kt ◦ Pq) = t, ∀q ≥ 2, t ≥ 3

Therefore, the lower bound is given by

χ=(Kt ◦ Pq) ≥ t, ∀q ≥ 2, t ≥ 3 (6)

From (5)&(6), we get

χ=(Kt ◦ Pq) = t, ∀q ≥ 2, t ≥ 3

Theorem 3.4. The equitable coloring of comb product of complete Kt with
complete graph Kt′ is given by,

χ=[Kt ◦Kt′ ] =

{
t if t′ < t,

t′ otherwise
where t, t′ ≥ 3.

Proof. From the definition of comb product, the vertex is defined as follows

V [Kt ◦Kt′ ] = {hn, hnn′ ; 1 ≤ n ≤ t, 1 ≤ n′ ≤ t′}

where hn be the nodes of Complete Graph (Kt) and hnn′ be the nodes of
Complete Graph (Kt′).

Explicitly, by definition hn and hn1 have same color since both are inter-
linked. We consider hn1.
Case 1: If t′ < t

For 1 ≤ n ≤ t. We assign the color sequence (1, 2, . . . , t) to hn1; to hn2,
we assign the sequence (2, 3, . . . , t, 1); to hn3, the sequence (3, 4, . . . , t, 1, 2);
and we continue similarly, so that for hnt′ , the assigned color sequence is (t−
1, t, 1, . . . , t− 2).
Case 2: If t′ ≥ t

For 1 ≤ n ≤ t, 1 ≤ n′ ≤ t′. We assign the color sequence (1, 2, . . . , t′)
to h1n′ ; to h2n′ , we assign the sequence (2, 3, . . . , t′, 1); to h3n′ , the sequence
(3, 4, . . . , t′, 1, 2); and continuing similarly, for htn′ , we assign the sequence
(t, t + 1, . . . , t′, 1, 2, . . . , t − 1) if (t′ > t) and if (t’ = t) we assign the color
sequence t, 1, 2, ..., t− 1 to vertices htn′ .
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The absolute difference between any two color class is either 1 or 0. Here
by, the above coloring strategy gives the upper bound

χ=(Kt ◦Kt′) ≤

{
t if t′ < t,

t′ otherwise
where t, t′ ≥ 3. (7)

By Proposition 2.1, we have

χ=(Kt ◦Kt′) ≥ χ(Kt ◦Kt′) =

{
t if t′ < t,

t′ otherwise
where t, t′ ≥ 3.

Therefore, the lower bound is given by

χ=(Kt ◦Kt′) ≥

{
t if t′ < t,

t′ otherwise
where t, t′ ≥ 3. (8)

From (7)&(8), we get

χ=(Kt ◦Kt′) =

{
t if t′ < t,

t′ otherwise
where t, t′ ≥ 3.

Theorem 3.5. The equitable coloring of comb product of cycle Cr with cycle
graph Cr′ is given by,

χ=[Cr ◦ Cr′ ] =


{

2 if r’ is even

3 if r’ is odd
if r is even

3 if r is odd

where r ≥ 3, r′ ≥ 4.

Proof. From the definition of comb product, the vertex is defined as follows

V [Cr ◦ Cr′ ] = {gm, gmm′ ; 1 ≤ m ≤ r, 1 ≤ m′ ≤ r′}

where gm be the nodes of Cycle Graph (Cr) and gmm′ be the nodes of Cycle
Graph (Cr′).

Explicitly, by definition gm and gm1 have same color since both are inter-
linked. We consider gm1.
Case 1: If r is odd

For 1 ≤ m ≤ r, 1 ≤ m′ ≤ r′ − 1. For m ≡ 1(mod3) and if 1 ≤ m ≤ r − 1,
we rerun the color sequence (1,2,3) to gmm′ . And if (m = r)∧ (m ≡ 1(mod3))
then we give the color sequence (2,3,1) to gmm′ . For m ≡ 2(mod3), we assign
the color sequence (2,3,1) to gmm′ . And for m ≡ 0(mod3), we rerun the color
(3,1,2) to gmm′ .
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For m′ = r′&1 ≤ m ≤ r. For m′ ≡ 1, 2(mod3), then the vertex gmr′ will
have the same color as gm2. For m′ ≡ 0(mod3), then the vertex gmr′ will have
the same color as gm3.
Case 2: If r is even
Sub case 1: If r′ ≡ 0(mod2)
For 1 ≤ m ≤ r, 1 ≤ m′ ≤ r′

For m ≡ 1(mod2), we assign the color sequence (1,2) to gmm′ while the
other case m ≡ 0(mod2), we have the color sequence (2,1) to the vertices
gmm′ .
Sub case 2: If r′ ≡ 1(mod2)
For 1 ≤ m ≤ r, 1 ≤ m′ ≤ r′ − 1. For m ≡ 1(mod3) and if 1 ≤ m ≤ r − 1,
we rerun the color sequence (1,2,3) to gmm′ . And if (m = r)∧ (m ≡ 1(mod3))
then we give the color sequence (2,3,1) to gmm′ . For m ≡ 2(mod3), we assign
the color sequence (2,3,1) to gmm′ . And for m ≡ 0(mod3), we rerun the color
(3,1,2) to gmm′ .
For m′ = r′ &1 ≤ m ≤ r. For m′ ≡ 1, 2(mod3), then the vertex gmr′ will have
the same color as gm2. For m′ ≡ 0(mod3), then the vertex gmr′ will have the
same color as gm3.

The absolute difference between any two color class is either 1 or 0. Here
by, the above coloring strategy gives the upper bound

χ=(Cr◦Cr′) ≤


{

2 if r’ is even

3 if r’ is odd
if r is even

3 if r is odd

where r ≥ 3, r′ ≥ 4. (9)

By Proposition 2.1, we have

χ=(Cr◦Cr′) ≥ χ(Cr◦Cr′) =


{

2 if r’ is even

3 if r’ is odd
if r is even

3 if r is odd

where r ≥ 3, r′ ≥ 4.

Therefore, the lower bound is given by

χ=(Cr ◦ Cr′) ≥


{

2 if r’ is even

3 if r’ is odd
if r is even

3 if r is odd

where r ≥ 3, r′ ≥ 4.

(10)
From (9)&(10), we get

χ=(Cr ◦ Cr′) =


{

2 if r’ is even

3 if r’ is odd
if r is even

3 if r is odd

where r ≥ 3, r′ ≥ 4.
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Theorem 3.6. The equitable coloring of comb product of cycle Cr with path
graph Pq is given by,

χ=[Cr ◦ Pq] =

{
2 if r is even

3 if r is odd
where, r ≥ 3, q ≥ 2

Proof. From the definition of comb product, the vertex is defined as follows

V [Cr ◦ Pq] = {gm, bdd′ ; 1 ≤ m, d ≤ r, 1 ≤ d′ ≤ q}

where gm be the nodes of Cycle Graph (Cr) and bdd′ be the nodes of Path
Graph Pq.

Explicitly, by definition gm and bd1 have same color since both are inter-
linked. We consider bd1.
Case 1: If r is odd
Sub case 1: If q < 4

For 1 ≤ d ≤ r − 1, 1 ≤ d′ ≤ 3. We assign the color sequence (1,2,3) for
the vertices bd1; for bd2 we assign (2,3,1); for bd3 we assign the color sequence
(3,1,2) respectively.

For d = r, 1 ≤ d′ ≤ 3. If d ≡ 1, 2 mod 3 we assign the color sequence (2,3,1)
to the vertices brd′ . And if d ≡ 0 mod 3, we assign the color sequence (3,1,2)
to brd′ . An illustration is given in Figure 3.

Figure 3: An example of C5 ◦ P3

Sub case 2: If q ≥ 5 For 1 ≤ d ≤ r, 1 ≤ d′ ≤ q − 1. For d ≡
1(mod3) and 1 ≤ d ≤ r − 1, we rerun the color sequence (1,2,3) to bdd′ . And
if (d = r) ∧ (d ≡ 1(mod3)) then we give the color sequence (2,3,1) to bdd′
respectively. For d ≡ 2(mod3), we assign the color sequence (2,3,1) to bdd′ .
And for d ≡ 0(mod3), we rerun the color (3,1,2) to bdd′ .

For 1 ≤ d ≤ r, d′ = q. For d′ ≡ 1, 2(mod3), then the vertex bdd′ will have
the same color as in bd2. And if d′ ≡ 0(mod3), then the vertex bdd′ will have
the same color as in bd3.
Case 2: If r is even
Sub case 1: If q ≡ 0(mod2)
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For 1 ≤ d ≤ r&1 ≤ d′ ≤ q. For d ≡ 1(mod2), we assign the color
sequence (1,2) to bdd′ while the other case d ≡ 0(mod2), we have the color
sequence (2,1) to the vertices bdd′ .
Sub case 2: If q ≡ 1(mod2)

For 1 ≤ d ≤ r, 1 ≤ d′ ≤ q − 1. If d ≡ 1(mod3) and 1 ≤ d ≤ r − 1, we
rerun the color sequence (1,2,3) to bdd′ . If (d = r)∧ (d ≡ 1( mod 3)), the vertex
bdd′ will have the color sequence (2,3,1). If d ≡ 2(mod3), we rerun the color
sequence (2,3,1) to bdd′ . If d ≡ 0(mod3), we rerun the color sequence (3,2,1)
to bdd′ .
For d′ = q&1 ≤ d ≤ r

If d′ ≡ 1, 2(mod3), then the vertex bdd′ will have the same color as vertex
bd2. If d′ ≡ 0(mod3), then the vertex bdd′ will have the same color as vertex
bd3.

The absolute difference between any two color class is either 1 or 0. Here
by, the above coloring strategy gives the upper bound

χ=(Cr ◦ Pq) ≤

{
2 if r is even

3 if r is odd
where, r ≥ 3, q ≥ 2 (11)

By Proposition 2.1, we have

χ=(Cr ◦ Pq) ≥ χ(Cr ◦ Pq) =

{
2 if r is even

3 if r is odd
where, r ≥ 3, q ≥ 2

Therefore, the lower bound is given by

χ=(Cr ◦ Pq) ≥

{
2 if r is even

3 if r is odd
where, r ≥ 3, q ≥ 2 (12)

From (11)&(12), we get

χ=(Cr ◦ Pq) =

{
2 if r is even

3 if r is odd

Theorem 3.7. The equitable coloring of comb product of path Pq with cycle
graph Cr is given by,

χ=[Pq ◦ Cr] =

{
2 if r is even

3 if r is odd
where, r ≥ 4, q ≥ 2
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Proof. From the definition of comb product, the vertex is defined as follows

V [Pq ◦ Cr] = {bd, gmm′ ; 1 ≤ m, d ≤ q, 1 ≤ m′ ≤ r}
where bd be the nodes of Path Graph (Pq) and gmm′ be the nodes of Cycle
Graph (Cr).

Explicitly, by definition bd and gm1 have same color since both are inter-
linked. We consider gm1.
Case 1: If q is odd

For 1 ≤ m ≤ q, 1 ≤ m′ ≤ r − 1. For m ≡ 1(mod3) and if 1 ≤ m ≤ q − 1,
we rerun the color sequence (1,2,3) to gmm′ . And if (m = q) ∧m ≡ 1(mod3)
then we give the color sequence (2,3,1) to gmm′ . For m ≡ 2(mod3), we assign
the color sequence (2,3,1) to gmm′ . And for m ≡ 0(mod3), we rerun the color
(3,1,2) to gmm′ .

For m′ = r&1 ≤ m ≤ q. For m′ ≡ 1, 2(mod3), then the vertex gmr will
have the same color as gm2. For m′ ≡ 0(mod3), then the vertex gmr will have
the same color as gm3.
Case 2: If q is even
Sub case 1: If r ≡ 0(mod2)

For 1 ≤ m ≤ q, 1 ≤ m′ ≤ r. For m ≡ 1(mod2), we assign the color
sequence (1,2) to gmm′ while the other case m ≡ 0(mod2), we have the color
sequence (2,1) to the vertices gmm′ .
Sub case 2: If r ≡ 1(mod2)

For 1 ≤ m ≤ q, 1 ≤ m′ ≤ r − 1. For m ≡ 1(mod3) and if 1 ≤ m ≤ q − 1,
we rerun the color sequence (1,2,3) to gmm′ . And if m = q ∧ m ≡ 1(mod3)
then we give the color sequence (2,3,1) to gmm′ . For m ≡ 2(mod3), we assign
the color sequence (2,3,1) to gmm′ . And for m ≡ 0(mod3), we rerun the color
(3,1,2) to gmm′ .

For m′ = r &1 ≤ m ≤ q. For m′ ≡ 1, 2(mod3), then the vertex gmm′ will
have the same color as gm2. For m′ ≡ 0( mod 3), then the vertex gmm′ will have
the same color as gm3.

The absolute difference between any two color class is either 1 or 0. Here
by, the above coloring strategy gives the upper bound

χ=(Pq ◦ Cr) ≤

{
2 if r is even

3 if r is odd
where, r ≥ 4, q ≥ 2 (13)

By Proposition 2.1, we have

χ=(Pq ◦ Cr) ≥ χ(Pq ◦ Cr) =

{
2 if r is even

3 if r is odd
where, r ≥ 4, q ≥ 2

Therefore, the lower bound is given by

χ=(Pq ◦ Cr) ≥

{
2 if r is even

3 if r is odd
where, r ≥ 4, q ≥ 2 (14)
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From (13)&(14), we get

χ=(Pq ◦ Cr) =

{
2 if r is even

3 if r is odd
where, r ≥ 4, q ≥ 2

4 Observation

In general, comb graph product of any two graphs are not commutative. But
applying a function like equitable coloring to comb graph product, we procured
the results are commutative in nature.

5 Open Problem

This work can be extended to more complex graphs such as wheel, helm, and
closed helm graphs. Due to their unique structural characteristics, analyzing
the equitable coloring of their comb products poses several open problems. In
particular, determining tight bounds or exact values of the equitable chromatic
number for these graph products remains an open and challenging area for
further research.

References

[1] Agustin, I.H., Prihandini, R.M., Dafik, P2 . H-super antimagic total la-
beling of comb product of graphs, AKCE International Journal of Graphs
and Combinatorics, North-Holland, 16(2), (2019), 163–171.

[2] Chen, B. L., Lih, K. W., Wu, P. L., Equitable coloring and the maximum
degree, European Journal of Combinatorics 15(5) (1994), 443–447.

[3] Godsil, C. D., McKay, B. D., A new graph product and its spectrum,
Bulletin of the Australian Mathematical Society 18(1) (1978), 21–28.
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