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Abstract

In this paper, we study the existence and uniqueness of the
initial and boundary value problem for a class of higher order
semilinear hyperbolic partial differential equations with damp-
ing term. Based on priori estimates of solution we proved the
existence of the weak solution in the form of Fourier series
under suitable conditions. For this purpose Picard’s succes-
sive approximation method was used. Furthermore we proved
the uniqueness of the weak solution.
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1 Introduction

In this paper, we examine the existence of a solution to the following initial
and boundary value problem

∂2u

∂t2
+ (−1)ka2

∂2ku

∂x2k
+ (−1)m2ε

∂2m+1u

∂x2m∂t
= f(x, t, u), (x, t) ∈ Ω = {0 < x < π, 0 < t < T} ,

(1)

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ π, (2)

∂2lu(0, t)

∂x2l
=

∂2lu(π, t)

∂x2l
= 0, l = 0, 1, 2, ..., k − 1, 0 ≤ t ≤ T,

(3)
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where k ≥ 1 and m ≥ 0 (k ≥ m) are natural numbers and T > 0 is a real
number, ε ≥ 0 is a parameter to be determined later, f(x, t, u) is a given
function defined in Ω× (−∞,∞), and u = u(x, t) is a solution to the problem.

It is known that in the case of f(x, t, u) = F (x, t), the problem with the
non-homogeneous equation with homogeneous initial or boundary conditions
will turn into a problem with homogeneous equations and non-homogeneous
initial or boundary conditions, and also if the non-homogeneous equation is
given with non-homogeneous initial or boundary conditions, the problem will
turn into these two cases. The method of separation of variables is widely
used together with the principle of linear combination to solve these problems.
This method is also known as the Fourier series method or the eigenfunction
expansion method [1].

Baouendi and Grisvard showed that the boundary value problem for the
differential equation x∂u

∂t
+ (−1)m ∂2mu

∂x2m = F (x, t) has a unique solution [2].

Amanov and Ashyralyev showed the solvability of the initial and boundary
value problems and the boundary value problem for the differential equation
∂2ku
∂x2k + ∂2u

∂t2
= F (x, t) [3]. They established the well-posedness of the problem

depends on the evenness and oddness of the number k.

Amanov showed that the initial and boundary value problem for the dif-
ferential equation tm∂2ku

∂x2k + (−1)k ∂u
∂t

= F (x, t) has a unique solution [4].

In the references [5] and [6] it is showed that the initial and periodic bound-
ary value problem for the differential equations ∂u

∂t
− a2 ∂

2u
∂x2 = f(x, t, u) and

∂u
∂t

− a2 ∂
2u

∂x2 − ε ∂3u
∂x2∂t

= f(x, t, u) have unique solutions respectively.

Yuldasheva showed the unique solvability of the problem with boundary
conditions with respect to t and periodic boundary conditions with respect to
x for the differential equation ∂2u

∂t2
− a2 ∂

2ku
∂x2k = f(x, t, u) [8].

Tantas and Polat showed that the initial and boundary value problem for
the differential equation ∂u

∂t
+ (−1)k tm∂2ku

∂x2k = f(x, t, u) has a unique solution
[7].

Since the case of
∂2m+1u

∂x2m∂t
and f(x, t, u) is considered in our current equa-

tion, it is clear that it generalizes some of the studies given above. After giving
the weak solution in the form of a Fourier series containing the eigenfunctions
obtained from the eigenvalue problem related to the current problem, the uni-
form convergence of the series related to the solution generated by Picard
successive approximations is shown. In addition, the uniqueness of the weak
solution is proven.

Definition 1.1 A function v(x, t) ∈ C(Ω) is called a test function if it
has continuous partial derivatives involved in equation (1) and it satisfies the

boundary conditions in (3) and v(x, T ) =
∂v(x, T )

∂t
=

∂2mv(x, T )

∂x2m
= 0.
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Definition 1.2 The function u(x, t) ∈ C(Ω) that satisfies the following inte-
gral equation for an arbitrary test function v(x, t) is called a weak solution of
the problem (1)-(3):

T
0
π
0

[(
∂2v

∂t2
+ (−1)ka2

∂2kv

∂x2k
− (−1)m2ε

∂2m+1v

∂x2m∂t

)
u− f(x, t, u)v

]
dxdt = 0. (4)

Using the weak solution in the form of Fourier series, we obtain an infi-
nite number of nonlinear integral equations for the Fourier series coefficients
from problems (1)-(3). The space in which the Fourier series coefficients are
solutions is defined and the appropriate norm is given.

Definition 1.3 Let BT denote the set of continuous functions which are Fourier
coefficients

{u(t)} = {u1, u2, ..., un, ...}

in the interval [0, T ] that satisfy the condition

∞∑
n=1

max
0≤t≤T

|un(t)| < ∞.

Let the norm in BT be defined as follows:

∥u(t)∥ =
∞∑
n=1

max
0≤t≤T

|un(t)| .

Clearly, BT is a Banach space.

2 Solution to the Problem

Let’s look for the weak solution of the problem (1)-(3) in the form

u(x, t) =
∞∑
n=1

un(t) sinnx, (5)

where un(t), (n = 1,∞) is the unknown function. To find it, the following
integral equation is obtained under the condition ∆ = 4

(
ε2n4m − a2n2k

)
< 0

using equation (4):

un(t) =
2

βπ

t

0

π
0e

α(t−τ)f

(
ξ, τ,

∞∑
n=1

un(τ) sinnξ

)
sin β (t− τ) sinnξdξdτ, (6)

where α = −εn2m and β =
√
a2n2k − ε2n4m.
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Theorem 2.1 Under the following conditions, equation (6) admits a unique
solution in BT :

1) ε ≤ a√
2
nk−2m,

2) f(x, t, u) is continuous with respect to all variables in Ω×R,
3) |f(x, t, u)− f(x, t, v)| ≤ b(x, t) |u− v|, b(x, t) > 0 ve b(x, t) ∈ L2(Ω),
4) f(x, t, 0) ∈ L2(Ω).

Lemma 2.2 Under the conditions of Theorem 1, equation (6) has at least one
solution in BT .

Proof. If we apply the method of successive approximations, for equation
(6) where N = 1,∞, we get the following sequence

u(N+1)
n (t) =

2

βπ

t

0

π
0e

α(t−τ)f

(
ξ, τ,

∞∑
n=1

u(N)
n (τ) sinnξ

)
sin β (t− τ) sinnξdξdτ.

(7)

For simplicity let Au(N)(ξ, τ) =
∞∑
n=1

u
(N)
n (τ) sinnξ and{

u(N)(t)
}
=
{
u
(N)
1 (t), u

(N)
2 (t), ..., u

(N)
n (t), ...

}
. Clearly we have

max
0≤τ≤T

∣∣Au(N)(ξ, τ)
∣∣ ≤ ∞∑

n=1

max
0≤τ≤T

∣∣u(N)
n (τ)

∣∣ = ∥∥u(N)(τ)
∥∥
BT

. (8)

Now we want to show that u(N)(t) ∈ BT for all N , i.e.
∞∑
n=1

max
0≤t≤T

∣∣∣u(N)
n (t)

∣∣∣ <
∞.

According to the conditions in Theorem 1, it is clear that∥∥u(0)(t)
∥∥ =

∞∑
n=1

max
0≤t≤T

∣∣u(0)
n (t)

∣∣ = 0 < ∞.

For N = 0 in (7), we have

u(1)
n (t) =

2

βπ

t

0

π
0e

α(t−τ)f
(
ξ, τ, Au(0) (ξ, τ)

)
sin β (t− τ) sinnξdξdτ.

If Cauchy’s inequality is applied with respect to τ , we get∣∣u(1)
n (t)

∣∣ ≤ 2

βπ

(
t
0e

2α(t−τ)dτ
) 1

2
(
t
0 [

π
0f(ξ, τ, 0) sinnξdξ]

2 dτ
) 1

2

≤
(

1

−2αβ2

) 1
2

(
t
0

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

≤
(

1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

.
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By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(1)
n (t)

∣∣ ≤ ( ∞∑
n=1

1

εa2n2k+2m

) 1
2
(

∞∑
n=1

t

0

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

is obtained. By applying Bessel’s inequality we get

∞∑
n=1

∣∣u(1)
n (t)

∣∣ ≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0
f 2(ξ, τ, 0)dξdτ

) 1
2

.

Thus,
∥∥u(1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(1)
n (t)

∣∣∣ ≤ ( π
3εa2

) 1
2 ∥f(ξ, τ, 0)∥L2(Ω)

=
(

π
3εa2

) 1
2 M1 < ∞.

For N = 1 in (7), we have

u(2)
n (t) =

2

βπ

t

0

π
0e

α(t−τ)f
(
ξ, τ, Au(1) (ξ, τ)

)
sin β (t− τ) sinnξdξdτ.

=
2

βπ

t

0

e
α(t−τ)
0

π
(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0) + f (ξ, τ, 0)

)
sin β (t− τ) sinnξdξdτ.

If Cauchy’s inequality is applied with respect to τ , we get∣∣u(2)
n (t)

∣∣ ≤ 2

βπ

(
t
0e

2α(t−τ)dτ
) 1

2

(
t
0

[
π
0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ
) 1

2

+
2

βπ

(
t
0e

2α(t−τ)dτ
) 1

2
(
t
0 [

π
0f (ξ, τ, 0) sinnξdξ]2 dτ

) 1
2

≤
(

1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

+

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

.

By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(2)
n (t)

∣∣ ≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

+
1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2
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is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∞∑
n=1

∣∣u(2)
n (t)

∣∣ ≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)2
dξdτ

) 1
2

+
1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0
f 2(ξ, τ, 0)dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au(1) (ξ, τ)

∣∣2 dξdτ) 1
2
+
( π

3εa2

) 1
2 (t

0
π
0f

2(ξ, τ, 0)dξdτ
) 1

2

≤
( π

3εa2

) 1
2 ∥∥u(1)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2 +
( π

3εa2

) 1
2 (t

0
π
0f

2(ξ, τ, 0)dξdτ
) 1

2 .

Thus,
∥∥u(2)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(2)
n (t)

∣∣∣ ≤ ( π
3εa2

) 1
2
∥∥u(1)(t)

∥∥
BT

∥b(ξ, τ)∥L2(Ω)

+
(

π
3εa2

) 1
2 ∥f(ξ, τ, 0)∥L2(Ω) ≤

(
π

3εa2

) 1
2
∥∥u(1)(t)

∥∥
BT

M2 +
(

π
3εa2

) 1
2 M1 < ∞.

For N = 2 in (7), we have

u(3)
n (t) =

2

βπ

t

0

π
0e

α(t−τ)f
(
ξ, τ, Au(2) (ξ, τ)

)
sin β (t− τ) sinnξdξdτ.

=
2

βπ

t

0

e
α(t−τ)
0

π
(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f (ξ, τ, 0) + f (ξ, τ, 0)

)
sin β (t− τ) sinnξdξdτ.

If Cauchy’s inequality is applied with respect to τ , we get

∣∣u(3)
n (t)

∣∣ ≤ ( 1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

+

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

.

By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(3)
n (t)

∣∣ ≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

+
1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2
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is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∞∑
n=1

∣∣u(3)
n (t)

∣∣ ≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f (ξ, τ, 0)

)2
dξdτ

) 1
2

+
1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0
f 2(ξ, τ, 0)dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au(2) (ξ, τ)

∣∣2 dξdτ) 1
2
+
( π

3εa2

) 1
2 (t

0
π
0f

2(ξ, τ, 0)dξdτ
) 1

2

≤
( π

3εa2

) 1
2 ∥∥u(2)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2 +
( π

3εa2

) 1
2 (t

0
π
0f

2(ξ, τ, 0)dξdτ
) 1

2 .

Thus,
∥∥u(3)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(3)
n (t)

∣∣∣ ≤
(

π
3εa2

) 1
2
∥∥u(2)(t)

∥∥
BT

∥b(ξ, τ)∥L2(Ω) +(
π

3εa2

) 1
2 ∥f(ξ, τ, 0)∥L2(Ω)

≤
(

π
3εa2

) 1
2
∥∥u(2)(t)

∥∥
BT

M2 +
(

π
3εa2

) 1
2 M1 < ∞.

Let’s show its truth for each N by induction:

ForN = k−1 in (7),
∥∥u(k)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k)
n (t)

∣∣∣ ≤ ( π
3εa2

) 1
2
∥∥u(k−1)(t)

∥∥
BT

M2 (τ)

+
(

π
3εa2

) 1
2 M1 (τ) < ∞ be correct.

For N = k in (7), we have

u(k+1)
n (t) =

2

βπ

t

0

π
0e

α(t−τ)f
(
ξ, τ, Au(k) (ξ, τ)

)
sin β (t− τ) sinnξdξdτ.

=
2

βπ

t

0

e
α(t−τ)
0

π
(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f (ξ, τ, 0) + f (ξ, τ, 0)

)
sin β (t− τ) sinnξdξdτ.

If Cauchy’s inequality is applied with respect to τ , we get

∣∣u(k+1)
n (t)

∣∣ ≤ ( 1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

+

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2

.

By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(k+1)
n (t)

∣∣ ≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

+
1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0
f(ξ, τ, 0) sinnξdξ

]2
dτ

) 1
2
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is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∞∑
n=1

∣∣u(k+1)
n (t)

∣∣ ≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f (ξ, τ, 0)

)2
dξdτ

) 1
2

+
1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0
f 2(ξ, τ, 0)dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au(k) (ξ, τ)

∣∣2 dξdτ) 1
2
+
( π

3εa2

) 1
2 (t

0
π
0f

2(ξ, τ, 0)dξdτ
) 1

2

≤
( π

3εa2

) 1
2 ∥∥u(k)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2 +
( π

3εa2

) 1
2 (t

0
π
0f

2(ξ, τ, 0)dξdτ
) 1

2 .

Thus,
∥∥u(k+1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k+1)
n (t)

∣∣∣ ≤ ( π
3εa2

) 1
2
∥∥u(k)(t)

∥∥
BT

∥b(ξ, τ)∥L2(Ω)

+
(

π
3εa2

) 1
2 ∥f(ξ, τ, 0)∥L2(Ω) ≤

(
π

3εa2

) 1
2
∥∥u(k)(t)

∥∥
BT

M2 +
(

π
3εa2

) 1
2 M1 < ∞.

Then u(N)(t) ∈ BT .

Now, let us show that the sequence
{
u(N)(t)

}
is uniformly convergent in BT

as N −→ ∞. For this, it is sufficient to show that the series

u(0)(t) +
∞∑

N=0

(
u(N+1)(t)− u(N)(t)

)
is uniformly convergent. First, we want to obtain estimates for the differences∣∣u(N+1)

n (t)− u(N)
n (t)

∣∣.
It is clear that

∥∥u(1)(t)− u(0)(t)
∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣u(1)
n (t)− u(0)

n (t)
∣∣ = ∞∑

n=1

max
0≤t≤T

∣∣u(1)
n (t)

∣∣ ≤ ( π

3εa2

) 1
2
M1 = AT < ∞.

We have

∣∣u(2)
n (t)− u(1)

n (t)
∣∣ ≤ 2

βπ

t

0

e
α(t−τ)
0

π
∣∣f (ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

∣∣ |sinnξ| dξdτ.
If Cauchy’s inequality is applied with respect to τ , we get

∣∣u(2)
n (t)− u(1)

n (t)
∣∣ ≤ ( 1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

.
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By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(2)
n (t)− u(1)

n (t)
∣∣ ≤ 1√

εa

(
∞∑
n=1

1

n2

) 1
2

×

(
t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)
sinnξdξ

]2
dτ

) 1
2

is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∞∑
n=1

∣∣u(2)
n (t)− u(1)

n (t)
∣∣ ≤ 1√

εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(1) (ξ, τ)

)
− f (ξ, τ, 0)

)2
dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au(1) (ξ, τ)

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2 ∥∥u(1)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2 .

Thus,
∥∥u(2)(t)− u(1)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(2)
n (t)− u

(1)
n (t)

∣∣∣ ≤ ( π
3εa2

) 1
2
∥∥u(1)(t)

∥∥
BT

∥b(ξ, τ)∥L2(Ω)

≤
(

π
3εa2

) 1
2 ATM2 < ∞.

We have

∣∣u(3)
n (t)− u(2)

n (t)
∣∣ ≤ 2

βπ

t

0

e
α(t−τ)
0

π
∣∣f (ξ, τ, Au(2) (ξ, τ)

)
− f

(
ξ, τ, Au(1) (ξ, τ)

)∣∣ |sinnξ| dξdτ.
If Cauchy’s inequality is applied with respect to τ , we get∣∣u(3)

n (t)− u(2)
n (t)

∣∣
≤
(

1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f

(
ξ, τ, Au(1) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

.

By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(3)
n (t)− u(2

n (t)
∣∣

≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f

(
ξ, τ, Au(1) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2
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is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∞∑
n=1

∣∣u(3)
n (t)− u(2)

n (t)
∣∣

≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(2) (ξ, τ)

)
− f

(
ξ, τ, Au(1) (ξ, τ)

))2
dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au(2) (ξ, τ)− Au(1) (ξ, τ)

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣u(2)(t)− u(1)(t

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2

(
t
0
π
0b

2 (ξ, τ)

{( π

3εa2

) 1
2 ∥∥u(1)(t)

∥∥
BT

(
τ
0
π
0b

2 (ξ1, τ1) dξ1dτ1
) 1

2

}2

dξdτ

) 1
2

≤
[( π

3εa2

) 1
2

]2
AT

(
t
0
π
0b

2 (ξ, τ)
(
τ
0
π
0b

2 (ξ1, τ1) dξ1dτ1
)
dξdτ

) 1
2

≤
[( π

3εa2

) 1
2

]2
AT

1√
2!

[(
t
0
π
0b

2 (ξ, τ) dξdτ
)2] 1

2

≤
[( π

3εa2

) 1
2

]2
AT

1√
2!

[(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2

]2
.

Thus,
∥∥u(3)(t)− u(2)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(3)
n (t)− u

(2)
n (t)

∣∣∣ ≤ [( π
3εa2

) 1
2

]2
AT

1√
2!
∥b(ξ, τ)∥2L2(Ω)

≤
[(

π
3εa2

) 1
2

]2
AT

1√
2!
M2

2 < ∞.

Let’s show its truth for each N by induction:

ForN = k−1,
∣∣u(k)(t)− u(k−1)(t)

∣∣ = ∞∑
n=1

∣∣∣u(k)
n (t)− u

(k−1)
n (t)

∣∣∣ ≤ [( π
3εa2

) 1
2

]k−1

AT
1√

(k−1)!
×

(t0
π
0b

2 (ξ, τ) dξdτ)
k−1
2 be correct. From here we get

∥∥u(k)(t)− u(k−1)(t)
∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣u(k)
n (t)− u(k−1)

n (t)
∣∣

≤
[( π

3εa2

) 1
2

]k−1

AT
1√

(k − 1)!
∥b(ξ, τ)∥(k−1)

L2(Ω)

≤
[( π

3εa2

) 1
2

]k−1

AT
1√

(k − 1)!
M

(k−1)
2 < ∞.
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For N = k, we have

∣∣u(k+1)
n (t)− u(k)

n (t)
∣∣ ≤ 2

βπ

t

0

e
α(t−τ)
0

π
∣∣f (ξ, τ, Au(k) (ξ, τ)

)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

)∣∣ |sinnξ| dξdτ.
If Cauchy’s inequality is applied with respect to τ , we get∣∣u(k+1)

n (t)− u(k)
n (t)

∣∣
≤
(

1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

.

By summing over n and applying Hölder’s inequality

∞∑
n=1

∣∣u(k+1)
n (t)− u(k)

n (t)
∣∣

≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∞∑
n=1

∣∣u(k+1)
n (t)− u(k)

n (t)
∣∣

≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(k) (ξ, τ)

)
− f

(
ξ, τ, Au(k−1) (ξ, τ)

))2
dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au(k) (ξ, τ)− Au(k−1) (ξ, τ)

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣u(k)(t)− u(k−1)(t

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2

t
0
π
0b

2 (ξ, τ)

{[( π

3εa2

) 1
2

]k−1

AT
1√

(k − 1)!

(
t
0
π
0b

2 (ξ, τ) dξdτ
) k−1

2

}2

dξdτ

 1
2

≤
[( π

3εa2

) 1
2

]k
AT

1√
(k − 1)!

(
t
0
π
0b

2 (ξ, τ)
(
τ
0
π
0b

2 (ξ1, τ1) dξ1dτ1
)k−1

dξdτ
) 1

2

≤
[( π

3εa2

) 1
2

]k
AT

1√
(k − 1)!

1√
k

[(
t
0
π
0b

2 (ξ, τ) dξdτ
)k] 1

2

≤
[( π

3εa2

) 1
2

]k
AT

1√
k!

[(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2

]k
.
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Thus,
∥∥u(k+1)(t)− u(k)(t)

∥∥
BT

=
∞∑
n=1

max
0≤t≤T

∣∣∣u(k+1)
n (t)− u

(k)
n (t)

∣∣∣ ≤ [( π
3εa2

) 1
2

]k
AT

1√
k!
∥b(ξ, τ)∥kL2(Ω)

≤
[(

π
3εa2

) 1
2

]k
AT

1√
k!
Mk

2 < ∞. From here it is obvious that

u(N+1)(t) = u(0)(t) +
N∑
k=0

(
u(k+1)(t)− u(k)(t)

)
≤

∞∑
k=0

[( π

3εa2

) 1
2

]k
AT

1√
k!
Mk

2 .

The uniform convergence of the sequence
{
u(N)(t)

}
in BT is obtained from

the convergence of the series
∞∑
k=0

[(
π

3εa2

) 1
2

]k
AT

1√
k!
Mk

2 . As a result, the series

u(0)(t) +
∞∑

N=0

(
u(N+1)(t)− u(N)(t)

)
is uniformly convergent.

Let lim
N→∞

u(N+1)(t) = u(t). Since the sequence
{
u(N)(t)

}
is uniformly con-

vergent, the function u(t) is continuous in BT . Let us show that the function
u(t) satisfies the integral equation (6):

We have

∣∣u(t)− u(N+1)(t)
∣∣ = ∞∑

n=1

∣∣un(t)− u(N+1)
n (t)

∣∣
≤

∞∑
n=1

2

βπ

t

0

e
α(t−τ)
0

π
∣∣f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξdτ.
If Cauchy’s inequality is applied with respect to τ , we get∣∣u(t)− u(N+1)(t)

∣∣
≤

∞∑
n=1

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

.

By applying Hölder’s inequality∣∣u(t)− u(N+1)(t)
∣∣

≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2
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is obtained. If Bessel inequality and the Lipschitz condition is applied, we get

∣∣u(t)− u(N+1)(t)
∣∣ ≤ 1√

εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N) (ξ, τ)

))2
dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣Au (ξ, τ)− Au(N) (ξ, τ)

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣u(t)− u(N)(t)

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2 ∥∥u(t)− u(N)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2 .

If we show that lim lim
N→∞

∥∥u(t)− u(N)(t)
∥∥
BT

= 0, it follows that the func-

tion u(t) satisfies the integral equation (6). If Cauchy’s inequality, Hölder’s
inequality, Bessel’s inequality and Lipschitz’s condition are applied, then

∣∣u(t)− u(N+1)(t)
∣∣ = ∞∑

n=1

∣∣un(t)− u(N+1)
n (t)

∣∣

≤
∞∑
n=1

2

βπ

t

0

e
α(t−τ)
0

π
∣∣f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N) (ξ, τ)

)∣∣ |sinnξ| dξdτ
≤

∞∑
n=1

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

+
∞∑
n=1

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0

(
f
(
ξ, τ, Au(N+1) (ξ, τ)

)
− f

(
ξ, τ, Au(N) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N+1) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2

+
1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

t
0

∞∑
n=1

[
2

π

π

0

(
f
(
ξ, τ, Au(N+1) (ξ, τ)

)
− f

(
ξ, τ, Au(N) (ξ, τ)

))
sinnξdξ

]2
dτ

) 1
2
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≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f (ξ, τ, Au (ξ, τ))− f

(
ξ, τ, Au(N+1) (ξ, τ)

))2
dξdτ

) 1
2

+
1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0

(
f
(
ξ, τ, Au(N+1) (ξ, τ)

)
− f

(
ξ, τ, Au(N) (ξ, τ)

))2
dξdτ

) 1
2

≤
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣u(t)− u(N+1)(t)

∣∣2 dξdτ) 1
2

+
( π

3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ)
∣∣u(N+1)(t)− u(N)(t)

∣∣2 dξdτ) 1
2

≤
( π

3εa2

) 1
2 ∥∥u(t)− u(N+1)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2

+
( π

3εa2

) 1
2 ∥∥u(N+1)(t)− u(N)(t)

∥∥
BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2

is obtained. From here we get

∥∥u(t)− u(N+1)(t)
∥∥
BT

≤
( π

3εa2

) 1
2 ∥∥u(t)− u(N+1)(t)

∥∥
BT

∥b(ξ, τ)∥L2(Ω)

+
( π

3εa2

) 1
2

[(π
6

) 1
2

]N
AT

1√
N !

∥b(ξ, τ)∥NL2(Ω) ∥b(ξ, τ)∥L2(Ω)

≤
( π

3εa2

) 1
2 ∥∥u(t)− u(N+1)(t)

∥∥
BT

M2 +
( π

3εa2

) 1
2
AT

1√
N !

MN+1
2

≤
( π

3εa2

) 1
2
M2

∥∥u(t)− u(N+1)(t)
∥∥
BT

+
( π

3εa2

) 1
2
M2AT

[(
π
6

) 1
2 M2

]N
√
N !

.

It is clear that lim
N→∞

∥∥u(t)− u(N)(t)
∥∥
BT

= 0. Thus, it is shown that the function

u(t) satisfies the integral equation (6).

Lemma 2.3 Under the conditions of Theorem 1, equation (6) has at most
one solution in BT .

Proof. To show the uniqueness of the solution, let us assume that v(t) is
another solution. We want to obtain an estimate for |u(t)− v(t)|:

If Cauchy’s inequality, Hölder’s inequality, Bessel’s inequality and Lips-
chitz’s condition are applied, then

|u(t)− v(t)| =
∞∑
n=1

|un(t)− vn(t)|
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≤
∞∑
n=1

2

βπ

t

0

e
α(t−τ)
0

π |f (ξ, τ, Au (ξ, τ))− f (ξ, τ, Av (ξ, τ))| |sinnξ| dξdτ

≤
∞∑
n=1

(
1

εa2n2k+2m

) 1
2

(
t
0

[
2

π

π

0
(f (ξ, τ, Au (ξ, τ))− f (ξ, τ, Av (ξ, τ))) sinnξdξ

]2
dτ

) 1
2

≤ 1√
εa

(
∞∑
n=1

1

n2

) 1
2
(

∞∑
n=1

t

0

[
2

π

π

0
(f (ξ, τ, Au (ξ, τ))− f (ξ, τ, Av (ξ, τ))) sinnξdξ

]2
dτ

) 1
2

≤ 1√
εa

(
π2

6

) 1
2
(

t
0

2

π

π

0
(f (ξ, τ, Au (ξ, τ))− f (ξ, τ, Av (ξ, τ)))2 dξdτ

) 1
2

≤
( π

3εa2

) 1
2 (t

0
π
0b

2 (ξ, τ) |u(t)− v(t)|2 dξdτ
) 1

2

≤
( π

3εa2

) 1
2 ∥u(t)− v(t)∥BT

(
t
0
π
0b

2 (ξ, τ) dξdτ
) 1

2

is obtained. From here we get

∥u(t)− v(t)∥BT
≤
( π

3εa2

) 1
2 ∥u(t)− v(t)∥BT

∥b(ξ, τ)∥L2(Ω)

≤
( π

3εa2

) 1
2 ∥u(t)− v(t)∥BT

M2

=
( π

3εa2

) 1
2
M2 ∥u(t)− v(t)∥BT

.

It is clear that ∥u(t)− v(t)∥BT
= 0. Thus, u(t) = v(t) and un(t) = vn(t),(

n = 1,∞
)
. This result can also be obtained by applying Gronwall’s inequality

to the inequality |u(t)− v(t)| ≤
(

π
3εa2

) 1
2
(
t
0
π
0b

2 (ξ, τ) |u(t)− v(t)|2 dξdτ
) 1

2 . In
other words, it was shown that the solution of the integral equation (6) is
unique.

Proof of Theorem 1. From Lemma 1 and Lemma 2, equation (6) has a
unique solution. Thus, the theorem is proved.

Theorem 2.4 Under the conditions of Theorem 1, the problem (1)-(3) has a
unique weak solution represented by the uniformly convergent series of (5).

Proof. The series (5) constructed using the solution of equation (6) is
continuous since it is uniformly convergent. Let the sequence of partial sums
of the series (5) be defined as follows:

u(l)(x, t) =
l∑

n=1

un(t) sinnx.
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From Teorem 1 and lim
l→∞

u(l)(x, t) = u(x, t), lim
l→∞

f
(
x, t, u(l)(x, t)

)
= f (x, t, u(x, t)).

Let

Sl =
T
0

π
0

[(
∂2v

∂t2
+ (−1)ka2

∂2kv

∂x2k
− (−1)m2ε

∂2m+1v

∂x2m∂t

)
u(l) − f(x, t, u(l))v

]
dxdt

be defined. We want to show that lim
l→∞

Sl = 0. By using partial integration

repeatedly,

Sl =
T
0

π
0

[
∂2

∂t2

(
l∑

n=1

un(t) sinnx

)
+ (−1)ka2

(
l∑

n=1

un(t)(−1)kn2k sinnx

)

+(−1)m2ε
∂

∂t

(
l∑

n=1

un(t)(−1)mn2m sinnx

)
− f

(
x, t, u(l)

)]
vdxdt

=T
0

π
0

[
∂2

∂t2

(
l∑

n=1

un(t) sinnx

)
+ (−1)ka2

∂2k

∂x2k

(
l∑

n=1

un(t) sinnx

)

+(−1)m2ε
∂2m+1

∂x2m∂t

(
l∑

n=1

un(t) sinnx

)
− f

(
x, t, u(l)

)]
vdxdt

=T
0

π
0

(
∂2

∂t2
u(l) + (−1)ka2

∂2k

∂x2k
u(l) + (−1)m2ε

∂2m+1

∂x2m∂t
u(l) − f

(
x, t, u(l)

))
vdxdt

is obtained. From here we get

lim
l→∞

Sl =
T
0

π
0

(
∂2

∂t2
u+ (−1)ka2

∂2k

∂x2k
u+ (−1)m2ε

∂2m+1

∂x2m∂t
u− f (x, t, u)

)
vdxdt.

From equation (1), we have

lim
l→∞

Sl = 0.

Thus, the function u(x, t) =
∑∞

n=1 un(t) sinnx is a weak solution of the problem
(1)-(3). The theorem is proved.

3 Open Problem

We examined the existence and uniqueness of the initial and boundary value
problem (1)-(3). Under the conditions in the theorem, existence and unique-
ness are proven to be valid for every bounded T, that is, global existence and
uniqueness. Similar studies can be done for the boundary value problem to
the equation considered. Moreover stability of the problem can be studied.
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