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Abstract

This paper aims to investigate specific properties of Sasakian
manifolds with respect to a general connection. Furthermore,
we provide a characterization of Sasakian manifolds that ad-
mit a general connection, using the M-projective curvature
tensor. The study concludes with an example focusing on
three-dimensional Sasakian manifolds.
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1 Introduction

The concept of a Sasakian structure was introduced by S. Sasaki in 1960 [8].
A contact manifold is called a Sasakian manifold if it is normal. In certain
aspects, Sasakian manifolds can be regarded as the odd-dimensional counter-
parts of Kéhler manifolds. In 1971, Pokhariyal and Mishra [7] introduced a
tensor field M on a Riemannian manifold, defined as follows:

M(D,E)F = R(D,E)F—m
1

_ m[g(f}, F)QD — g(D, F)QE],

[Ric(E, F)D — Ric(D, F)E] (1)
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forall D, E, F € x(M), such a tensor field M is referred to as the M-projective
curvature tensor, Here, R(D, E)F denotes the Riemannian curvature tensor
of type (0, 3), Ric represents the Ricci tensor of type (0,2) and @ is the Ricci
operator.

The properties of the M -projective curvature tensor in Sasakian and Kahler
manifolds were studied by Ojha [5]. Furthermore, in [6], it was demonstrated
that this tensor serves as a unifying framework that connects the conformal,
conharmonic, and concircular curvature tensors. Singh [10] established that
an M-projectively flat para-Sasakian manifold is necessarily an Einstein mani-
fold. He further showed that if a para-Sasakian Einstein manifold satisfies the
condition R(§, D)M = Othen it is locally isometric to a unit sphere S™(1).
The symbols V*®, V&, VI, VT V9 and V stands for Schouten-Van Kamper
connection , the General connection, the Zamkovoy connection, the General-
ized Tanaka-Webster connection, the quarter-symmeteric connection, and the
Levi-civita connection respectively.

The general connection V¢ is defined as

VGE = VpE + Ki[(Vpn)(E)E — n(E)V €] + Kon(D)gE (2)

for all D, E € x(M) and the pair (K7, K3) being real constants. The beauty
of such connection V¢ lies in the fact that it has the flavour of

1. quarter symmetric metric connection([3], [1]) for (K7, K») = (0, —1).
2. Schouten-Van Kampen connection [9] for (K7, K»3) = (1,0).

3. Tanaka Webster connection [11] for (K7, K3) = (1, —1).

4. Zamkovoy connection [11] for (K, K3) = (1,1).

In [2], Biswas, Das, Baishya and Bakshi studied n—Ricci solitons on Kenmotsu
manifolds admitting a general connection. Additionally, Mandal and Das [4]
studied the M-Projective curvatue tensor in Sasakian manifolds admitting
Zamkovoy connection.

In a Sasakian manifold M of dimension (n > 2), the M —projective curvature
tensor M¢ with respect to the general connection V¢ is given by

MC¢(D,E)YF = RCE(D,E)F —

1
2(n—1)

2 =y " (B, F)D — Ric® (D, F)E)(3)

[g<E7 F)QGD - G(Da F)QGE]a
where RY, Ric® and Q¢ denote the Riemannian curvature tensor, the Ricci

tensor, and the Ricci operator, respectively, all defined with respect to the
general connection VY.
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Definition 1.1 /2] An n—dimensional Sasakian manifold M is said to be
an n— Einstein manifold if its Ricci tensor satisfies Ric(D, E) = K19(D, E) +
Kon(D)n(E), for all vector fields D, E € x(M) where Ky and Ky are scalars
on M

Definition 1.2 [2] An n—dimensional Sasakian manifold M is called M-
projectively flat if its M-projective curvature tensor vanishes identically (that
is, MY =0).

Definition 1.3 /2] An n—dimensional Sasakian manifold M is said to be
£-M -projectively flat if the MY (D, EY¢ =0 for all D, E € x(M).

2 Preliminaries

In this section, we present several definitions and fundamental concepts that
will be used throughout the paper. Let M be an n-dimensional almost contact
metric manifold equipped with an almost contact metric structure (¢, &, n,g)
where ¢ is a (1,1) tensor field, £, is a vector field, n is a 1-form 1 and g is a
Riemannian metric, satisfying the following conditions:

' =—T+n®E nE) =1, ¢¢=0, nogp =0, (4)

where I denotes the identity endomorphism. A smooth manifold M endowed
with an almost contact structure is called an almost contact manifold. A
Riemannian metric g on M is said to be compatible with an almost contact
structure (¢, &, n, g) it satisfies the condition:

9(D,E) = g(¢D,dE) +n(D)n(E) (5)
9(¢D, E) = —g(D, ¢F). (6)

for all vector fields D and E on M.

A K-contact manifold is a contact metric manifold Conversely, a contact metric
manifold is K-contact if and only if the Lie derivative of ¢in the direction of
the characteristic vector field £ vanishes identically, i.e., identically .

A Sasakian manifold is a always a K-conatct manifold. vanishes identically,
K-contact manifold is Sasakian manifold.

It is well known that a contact metric manifold is Sasakian if and only if

R(D, E)§ =n(E)D —n(D)E. (7)

In a Sasakian manifold equipped with the structure (¢, ,n,g), the following
relations also hold [4]:

(Von)E = g(D, ¢E) (8)
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R(& D)E = g(D, E)¢ —n(E)D (9)
Rie(D, €) = (n—1)n(D) (10)
R(D,§)E =n(E)D —g(D, E)§ (11)
Q¢ = (n—1)¢. (12)

3 Main results

3.1 Some properties of Sasakian manifold admitting gen-
eral connection

Proposition 3.1 Let M be an n—dimensional Sasakian manifold equipped
with a general connection V. Then:

1. the curvature tensor RE of V¢ is given by equation (13).
2. the Ricci tensor Ric® of VY is given by equation (14).

3. the scalar curvature r¢ of V¢ is given by equation (17).
4. the Ricci tensor Ric® of VY is symmetric.

Proof: Let the curvature tensor RS corresponding to the general connection
VY be defined by RY(D, E)F = VEVEF — VEVEF — V[%?E]F

forall D, E,F € x(M). Using equations (2) and (5) through (11)together with
the definition above, we obtain the expression for the Riemannian curvature
tensor with respect to the general connection V¢ as follows:

RY(D,E)F = R(D,E)F + (K, + K, — K1 K,)((9(D, F)n(E) (13)
— g9(E,F)n(D))¢ + (n(D)E —n(E)D)n(F))
+ (2K, — K2)g(D, ¢F)$E + 2K+(g(D, $E)$F).

Consequently, one can easily bring out the following results:

RicY(E,F) = Ric(BE,F)+ (K,(1 - K,)+ Ky(K, +1))g(E,F) (14)
+ (Ki(Ky—n) + (n = 2) K1 Ky — nKo)n(E)n(F),

Ric“(E,€) = (n — 1)(1 = K1 — Ky + K1 Ka)n(E), (15)
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Q°E = QFE+ (K\(1-K))+Ky(K,+1)E (16)

+ (Ky(K) —n) + (n—2)K Ky — nKy)n(E),
¢ =r—(n—1)K?+2(n— 1)K, Ko, (17)
RY(D,E)¢ = (KK — Ky — Ky + 1)(n(E)D — (D) E), (18)
RY(§, E)F = (K1Kz — K1 — Kz + 1)(g(E, F)¢ — n(F)E), (19)
RE(D,&)F = (K, + Ky — K\ Ky — 1)(g(D, F)¢ — n(F)D). (20)

Theorem 3.2 If a Sasakian manifold M is Ricci flat with respect to the gen-
eral connection V¢, then M is an n-Einstein manifold.
Proof: Assume that the Sasakian manifold M is Ricci flat with respect to the
general connection V, then from (14), the Ricci tensor takes the form:

+ (n—2)K Ky — nk,)n(E)n(F),

which shows that M is an n-Einstein manifold.

3.2 M-Projectively flat Sasakian manifold with respect
to the general connection

Theorem 3.3 Let M be an n-dimensional Sasakian manifold with M(n > 2)

that is M -projectively flat with respect to the general connection V<. Then M

1s an n— Einstein manifold.

Proof: Let M be an n-dimensional M -projectively flat Sasakian manifold with
respect to general connection, i.e., M€ = 0. Then from (3), we have

RY(D,E)F = ﬁ[RiCG(E,F)D—R@'cG(D,F)E] (21)

+ ﬁ[g(ﬂ F)QD — G(D, F)QUE].

Taking the inner product of equation (21) with a vector field V, and then con-
tracting over the vector fields D and V, we obtain:

nRic®(E, F) = g(E, F)r. (22)
Using equations (14), (17) in (22), we obtain:
Ric(E,F) — %(r + (K1 = n) Ky — nKs + (n— 2) K1 K»)g(E, F)
+ (n(Ky + K) — Ki + (2= n) K Ko)n(E)n(F).

Hence, M is an n-Einstein manifold.
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Theorem 3.4 Let M be an n-dimensional Sasakian manifold with (n > 2)
which is € — M-projectively flat with respect to the general connection V&
Sasakian manifold. Then M is an n-Finstein manifold.

Proof: If M(n > 2) is & — M—projectively flat with respect to the general
connection,

i.e., MY(D, E)¢ = 0, for all vector fields D, E € x(M).

Then, from (3), we have

R%(D, E)¢ = [Ric(E,€)D — Ric®(D,€)E +n(E)Q°D — n(D)Q°E].

2(n —1)
Taking the inner product of this equation with an arbitrary vector field V, it
follows that

(KK, — K1 — Ko+ 1)(n(E)g(D,V) —n(D)g(E,V)) (23)

_ Q(n—l_l)(Rz'cG(E,f)g(D, V) — Ric®(D,€)g(E. V)

+ n(B)g(Q“D,V) —n(D)g(QE. V).
Setting E = & and using equations (15) and (16) in (23), we get
Ric(D,V) = ((n—2)K\Ky+ (n—1) —nk; —nKy+ K{)g(D,V) (24)
+ (n(Ky+ K) + (2 —n)K 1 K> — K{)n(D)n(V).
Therefore, M 1is an n-Einstein manifold.

Corollary 3.5 If a Sasakian manifold M(n > 2) admits a general connection
V& is € — M—projectively flat, then its scalar curvature v is constant.

Let {e;} (1 < i < n) be an orthonormal basis of the tangent space at an
arbitrary point M. Setting E' = F' = ¢; in the equation (24) and summing over
i, 1 <i<n,weobtain: r = (n—1)K? + (n> — 3n+2) K1 Ky + n(1 —n)(K; +
Ky — ].),

which is constant.

Theorem 3.6 An n—dimensional Sasakian manifold is & — M —projectively
flat with respect to the general connection if and only if it is so with respect to
Levi-civita connection, provided that the vector fields involved are horizontal.
Proof: Using equations (14) and (16), we have
M®(D, E)F = M(D,E)F + (K + Ky — K1 K2)(g(D, F)n(E)¢ — g(E, F)n(D)¢)
+ (K7 = 2K0)(g(E, 6F)¢D — g(D, ¢F)$E) + (K1 Ky — K1 — K5)(n(E)n(F)D
—n(Dn(FE) + 2Ks9(D, pE)pF — ——
n(D)n(F)E) + 2K>9(D, o) D)
x g(E,F)D — g(D, F)E] + (Ki(K; —n) + (n — 2) K1 K> — nK,)(n(E)n(F)D
—n(D)n(F)E +n(D)g(E, F)§ —n(E)g(D, F)§).

[2(K1(1 — K1) + Ka(K; + 1))
)

(25)
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Setting F' = £ in (25), we obtain

MS(D, B)¢ = M(D, E)é + (KyF> — Ky — ) (n(E)D — n(D)E)
If D and E are horizantal vector fields (i.e., n(D) = n(E) = 0), then from
above equation above it follows that MY (D, E)¢ = M(D,E)¢. That is, the

& — M -projective curvature tensors with respect to the general connection and
the Levi-Civita connection coincide when evaluated on horizontal vector fields.

Theorem 3.7 A Sasakian manifold M(n > 2) is locally M-projectively ¢-
symmetric with respect to the general connection V¢ if and only if it is so with
respect to Levi-civita connection.

Proof: Using (2), we have

(Vi MY)(D,E)F = (VyM%)(D, E)F + K1g(V,¢M“ (D, E)F)¢

(MY(D,E)F)¢V + Ko (V)M (D, E)F — K1g(V,¢D)MC (¢, E)F
(D)MC(¢V, E)F — n(V)K;M%(¢D, E)F — K1g(V, ¢ E)M%(D, £) F (26)
— Kain(E)MY(D,¢V)F — Kon(V)M(D, 9E)F — Kg(V,¢F)M“(D, E)¢
(FYM®(D, EY¢V — Kon(V)MC (D, E)¢F.

By differntiating (2), (13), (14), and (16) with respect to V, we obtain:

—1 ic
2(n _ 1) [(VVR )(Ev F)D (27)
- (VVRiCG)(D7 F)E =+ g(E, F)(VVQG)D - g(D7 F)(VVQG>E]7

(Vy M) (D,E)F = (VyR°)(D,E)F —

(VvR®)(D, E)F = (VyR)(D, E)F + (K + Ky — K1 K,)(g(D, F)g(V, 0 E)¢

—g(D, F)an(E)eV — g(E, F)g(V,¢D)§ + g(E, F)n(D)V + g(V, ¢D)n(F)E
+9(V,oFn(D)E — g(V, o E)n(F)D — n(E)g(V, ¢F) D) + 2K3(g(V, E)n(D)oF
—(E)g(D,V)¢F + g(D,¢E)g(V, F)§ — g(D, pE)n(F)V) + (K} — 2K1) (28)
x (g(V,oF)n(E)¢D —n(F)g(E,V)¢D + g(E, ¢F)g(V,¢D)E — g(E, ¢F)n(D)V
—g(V,¢F)n(D)oE +n(F)g(D,V)oE — g(D,¢F)g(V, pE)E + g(D, pE)E

+9(D, oF)n(E)V),

(VyRic)(E,F) = (VyRic)(E,F)+ (K\(K; —n)+ (n—2)K K, (29)
— nko)(g(V, oE(F) + g(V, oF)n(E)),

(VyQ9)D = (VyQ)D + (K{(K, —n)+ (n — 2) K, K> (30)
— nKs)(g(V,¢D)§ —n(D)eV),
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respectively.
Now combining the equations (27)-(30), we obtain:

(Vy M) (D, E)F = (VyR)(D,E)F + (K1 + Ky — K1K3)(g(D, F)(g (V PE)E

—n(E)pV) — g(E, F)(g(V,¢D)§ —n(D)oV) + g(V,¢D)n(F)E + g(V, ¢ F)
(D)E — g(V,0E)n(F)D — g(V, oF)n(E)D) + 2K5((9(E, V)n(D)
—g(D,V)n(E))$F + g(D, 9E)(g (V,F)é“—n(F)V)H(KQ—ZKl)

x ((9(V,0F)n(E) — g(E,V)n(F))¢D + g(E, oF)(g(V,$D)§ — n(D)V')

+ (9D, V)n(F) = g(V,0F)n(D))E + g(D, oF)(n(E)V — g(V, pE)S)) (31)
1

~ ) ———[(VvRic)(E,F)D — (VyRic)(D,F)E + g(E, F)(VyQ)D
(

—g(D, F)(VvQ)E + (Ki(Ky —n) + (n — 2) K1 Ky — nkG)(g(V, 9E)n(F)D
—g(V,¢D)n(F)E) + g(V,oF)(n(E)D — n(D)E) + g(E, F)(g(V,¢D)§
—n(D)pV) + g(D, F)(n(E)pV — g(V,pE)E)].

Now differentiating (1) with respect to V, we have

1

2(n—1)
- (vVRiC)(D7F)E+g(E7 F)(VVQ)D _g(D’F)(VVQ)E]'

(VyM)(D,E)F = (VyM)(D,E)F — [(VyRic)(E, F)D (32)

By use of (31), (32) takes the form

(VyME)(D,E)F = (VyM)(D,E)F + (Ki + Ky — K1 K3)(9(D, F)(g(V, 0 E)¢
—n(E)pV) — g(E, F)(g(V,¢D)§ —n(D)oV) + g(V,oD)n(F)E + g(V, ¢ F)
(D)E — g(V,¢E)n(F)D — g(V,¢F)n(E)D) + 2K5((g(E,V)n(D)
—n(E)g(D,V))¢F + g(D, ¢E)(g(V, F)é — n(F)V)) + (K} — 2K;)
x ((g(V,oF)n(E) — g(E,V)n(F))¢D + g(E, be)( (V,¢D)§ —n(D)V)
— (g(V,oF)n(D) — g(D,V)n(F))oE) — (9(D, ¢F)
-5 ! (56 = ) + (n = 20Ky = ) (o(V. 6E)D = g(V. D))
xn(F) +g(V,oF)(n(E)D —n(D)E) + g(E, F)(g(V,¢D){ — n(D)oV)
+g(D, F)(n(E)pV — g(V,¢E)g(D, F)E))]

(33)
(9(V,0E)E —n(E)V))
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Applying ¢* to both sides of equation (26), we obtain:

$*(VIMO)(D, E)F = ¢*(Vy M%)(D, E)F — Kin(M®(D, E)F)¢V + Kyn(V)
x ¢*(p(MY(D, E)F)) — Kin(D)¢" M (¢V, E)F — K\n(E)¢*M%(D, ¢V )F
— Kin(F)¢*M%(D, E)¢V — Kon(V)¢* MY (D, E)F + K1g(V, ¢D)n(F)pE

— Kag(V:FEWF)D + (s + Ko — Ky ) (Kug(V, 0D)n(F)6*E
+ KV, SEM(F)D) ~ 5t oV, 0E () (6E + D)

(
+ (Ki(1 = Ky) + Ka(Ky + 1)2Km(F)g(V, 0B)(¢°E — ¢°D) + (K1 (K1 = n) (34
+(n = 2)K1 Ky — nfG) (Kig(V, oD)n(F))(¢° E + ¢*(QE)) — Kig(V, ¢ E)n(F)

< (D + *(QD))| - KigV.oP)(D)E = (E)FPD)(K + Ko ~ Ky

1
e

[2n<n<E>¢2D (D)KL — Ky + KoKy + 1)

+ Kl(Kl — TL) + (n — 2)K1K2 — TLKQ + 2) s

Using equation (33) and assuming that the vector fields D, E, F' and V are
orthogonal to &, we obtain:

¢* (Vv M©)(D, E)F = ¢*(VyM)(D, E)F.

Hence the theorem.

Theorem 3.8 A pseudo-M-projectively flat Sasakian manifold with respect to
the general comnection is an n— FEinstein manifold with respect to the Levi-
Civita connection.

Proof: Assume that a Sasakian manifold M is pseudo-M -projectively flat with
respect to the general connection, i.e, g(M%(¢D, E)F, W) = 0, for all vector
fields D, E, F,W € x(M).

Then in view of (3), we have:

RY(¢D,E,F,¢W) = [Ric(E, F)g(¢D, oW) — Ric®(¢D, F)g(E, W)

1
2(n—1)
+ g(E, F)Ric®(¢D, W) — g(¢D, F)Ric% (E, ¢W)].

(35)

Let (€;,&)(1 <i <n—1) be a local orthonormal basis of the tangent space at
an arbitrary point of the manifold M. Since (pe;,&)(1 <i <n —1) also forms
a local orthonormal basis, we set D = W = e; and taking summation over i
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(1<i<n-—1)in (35), then we obtain:

RY(¢pe;, E, F, pe;) = Q(n—l Zch (E, F)g(¢e;, pe;) — ZRZC (pe;, F)g(E, ¢e;)

n—1 n—1

+ Y g(E F)Ric®(¢e;, ¢e;) — Y _ g(e, F)Ric® (E, ge;)].

i=1 i=1
From which we obtain:
Ric(E, F) = ag(E, F) + bn(D)n(E),

where a = +2[(n (K (1-K))+ Ko (K1+1)+r—(n—1)—2(n—1) (K (1—
Ey) + KKy + 1)) and b = =2 D[(Ki (1 — K)) + K>(Ky + 1)) + Ky (K —
n) + (n — 2)K1K2 — ’I’LKQ]

Therefore, M s an n— Einstein manifold.

4 Example

We consider the 3-dimensional manifold M = {(x,y, z) € R}, where (z,y, 2)
are the standard coordinates on R®. Let e;, ea, e3 be a linearly independent
frame field on M, given by:

9 ) 0
€1 =€ —, €y = € — = —

ox

which is linearly independent at each point of M and hence form a basis of
the tangent space T,M. Let g be the Riemannian metric on M defined by:

( ) 1 ifi=y
€;,€5) = P .
g ! 0 ifi#j.

Let n be the 1-form on M defined by n(D) = g(D,e3) for any vector field
D € x(M). Define the (1, 1)-tensor field ¢ by

per = e1, ey =ez, ¢ez =0.

By the linearity of both ¢ and g we have

¢*’D =—D +n(D)¢, n(D)=g(D,§),

9(¢D, oF) = g(D, E) — n(D)n(E).
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Now, by direct computations, we can easily see that

[e1,e2] =0, e, es] = —e1, ez, €3] = —ea.

Furthermore, by V, we denote the Levi-civita connection on M, by using
Koszul’s formula, we can calculate, easily

velel = €3, V€2€1 = Oa Vegel = 07
v6162 = Oa V6262 = €3, v8362 = 07

Veles = —€q, Ve2€3 = —€9, Ve3€3 = 0.

From the above resuts we see that the structure (¢, &, n, g) satisfies (Vpo)E =
9(D, E)§=n(E)D,VD, E € x(M?), where (£) = n(es) = 1. Hence (¢,&,7, g) is
a 3—dimensional Sasakian manifold. The non zero components of Riemannian
curvature tensor with respect to Levi-civita connection V are given by:

R(e1,e2)e; = ey, R(er,e3)er =es, R(ez,es)e; =0,
R(€1, 62)62 = —¢€y, R(Bb 63)62 =0, R(€2>€3)€2 = €3,

R(ei,e2)es =0, R(ei,e3)es = —e1, R(ez, e3)es = —es.

Using the general connection V¢ defined by equation (2), the covariant deriva-
tives are computed as

Vgel = (1 -+ Kl)eg, Vgel = 0, stel = ngl,
Vgeg = O, Vgeg = (1 —+ K1>63, VEGBQQ = K2€2,
Vgeg = (Kl — 1)61, Vereg = (Kl — 1)62, Vgeg =0.

The non zero components of Riemannian curvature tensor with respect to
general connection are given by:

RG(el, 62)61 = (1 — K12)62, RG(€17 63)61 = (Kl + 1)(1 + Kg)eg, RG(GQ, 63)61 = 0,
R%(ey, es)es = (K7 —1)er, R%(e1,e3)es =0, RY(ea,e3)ex = (1+ Kip)(1+ Ky)es,
RG(el, 62)63 = 0, RG(el, 63)63 = (Kl — 1)(1 — Kg)el, RG(eg, 63)63 = (Kl — 1)(1 — Kg)eg.

Using the above curvature tensor the Ricci tensors with respect to V and V¢
are: Ric(ey,e1) = Ric(es, ) = Ric(es,e3) = —2.

Ric%(e1,e1) = K1(K; + 1) + Ko(1 — K;) — 2 = Ric%(eq, e3),
RiCG(eg, 63) = —2(K1 + K2 + KlKQ + 1)
Finally, from these expressions, one verifies that
MG(el, 62)63 =0.
which confirms that the manifold M is &-projectively flat with respect to the
general connection.
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Open Problem

An open problem is to identify Sasakian manifolds that naturally arise in con-
tact and CR geometry, extending the analysis to contact metric manifolds or
almost contact manifolds with a general connection could bridge results across
related geometric structures.
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