
Int. J. Open Problems Compt. Math., Vol. 18, No. 3, September 2025
Print ISSN: 1998-6262, Online ISSN: 2079-0376
Copyright ©ICSRS Publication, 2025

Characterization of the M-Projective Curvature Tensor

in Sasakian Manifolds with General Connections

Pavithra R C and H G Nagaraja

Department of Mathematics, Bangalore University, Jnanabharathi,
Bengaluru-560056, Karnataka, India.

e-mail:Pavithrarc91@gmail.com
e-mail:hgnraj@yahoo.com

Received 10 March 2025; Accepted 3 June 2025

Abstract

This paper aims to investigate specific properties of Sasakian
manifolds with respect to a general connection. Furthermore,
we provide a characterization of Sasakian manifolds that ad-
mit a general connection, using the M-projective curvature
tensor. The study concludes with an example focusing on
three-dimensional Sasakian manifolds.
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1 Introduction

The concept of a Sasakian structure was introduced by S. Sasaki in 1960 [8].
A contact manifold is called a Sasakian manifold if it is normal. In certain
aspects, Sasakian manifolds can be regarded as the odd-dimensional counter-
parts of Kähler manifolds. In 1971, Pokhariyal and Mishra [7] introduced a
tensor field M on a Riemannian manifold, defined as follows:

M(D,E)F = R(D,E)F − 1

2(n− 1)
[Ric(E,F )D −Ric(D,F )E] (1)

− 1

2(n− 1)
[g(E,F )QD − g(D,F )QE],



M -Projective Curvature Tensor in Sasakian ... 71

for all D,E, F ∈ χ(M), such a tensor field M is referred to as the M -projective
curvature tensor, Here, R(D,E)F denotes the Riemannian curvature tensor
of type (0, 3), Ric represents the Ricci tensor of type (0, 2) and Q is the Ricci
operator.
The properties of the M -projective curvature tensor in Sasakian and Kahler
manifolds were studied by Ojha [5]. Furthermore, in [6], it was demonstrated
that this tensor serves as a unifying framework that connects the conformal,
conharmonic, and concircular curvature tensors. Singh [10] established that
an M -projectively flat para-Sasakian manifold is necessarily an Einstein mani-
fold. He further showed that if a para-Sasakian Einstein manifold satisfies the
condition R(ξ,D)M = 0then it is locally isometric to a unit sphere Sn(1).
The symbols ∇S, ∇G, ∇F , ∇T ,∇q, and ∇ stands for Schouten-Van Kamper
connection , the General connection, the Zamkovoy connection, the General-
ized Tanaka-Webster connection, the quarter-symmeteric connection, and the
Levi-civita connection respectively.
The general connection ∇G is defined as

∇G
DE = ∇DE +K1[(∇Dη)(E)ξ − η(E)∇Dξ] +K2η(D)φE (2)

for all D,E ∈ χ(M) and the pair (K1, K2) being real constants. The beauty
of such connection ∇G lies in the fact that it has the flavour of

1. quarter symmetric metric connection([3], [1]) for (K1, K2) ≡ (0,−1).

2. Schouten-Van Kampen connection [9] for (K1, K2) ≡ (1, 0).

3. Tanaka Webster connection [11] for (K1, K2) ≡ (1,−1).

4. Zamkovoy connection [11] for (K1, K2) ≡ (1, 1).

In [2], Biswas, Das, Baishya and Bakshi studied η−Ricci solitons on Kenmotsu
manifolds admitting a general connection. Additionally, Mandal and Das [4]
studied the M -Projective curvatue tensor in Sasakian manifolds admitting
Zamkovoy connection.
In a Sasakian manifold M of dimension (n > 2), the M−projective curvature
tensor MG with respect to the general connection ∇G is given by

MG(D,E)F = RG(D,E)F − 1

2(n− 1)
[RicG(E,F )D −RicG(D,F )E](3)

− 1

2(n− 1)
[g(E,F )QGD −G(D,F )QGE],

where RG, RicG and QG denote the Riemannian curvature tensor, the Ricci
tensor, and the Ricci operator, respectively, all defined with respect to the
general connection ∇G.
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Definition 1.1 [2] An n−dimensional Sasakian manifold M is said to be
an η−Einstein manifold if its Ricci tensor satisfies Ric(D,E) = K1g(D,E) +
K2η(D)η(E), for all vector fields D, E ∈ χ(M) where K1 and K2 are scalars
on M

Definition 1.2 [2] An n−dimensional Sasakian manifold M is called M-
projectively flat if its M-projective curvature tensor vanishes identically (that
is, MG = 0).

Definition 1.3 [2] An n−dimensional Sasakian manifold M is said to be
ξ-M-projectively flat if the MG(D,E)ξ = 0 for all D,E ∈ χ(M).

2 Preliminaries

In this section, we present several definitions and fundamental concepts that
will be used throughout the paper. Let M be an n-dimensional almost contact
metric manifold equipped with an almost contact metric structure (φ, ξ, η,g)
where φ is a (1, 1) tensor field, ξ, is a vector field, η is a 1-form η and g is a
Riemannian metric, satisfying the following conditions:

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, ηoφ = 0, (4)

where I denotes the identity endomorphism. A smooth manifold M endowed
with an almost contact structure is called an almost contact manifold. A
Riemannian metric g on M is said to be compatible with an almost contact
structure (φ, ξ, η, g) it satisfies the condition:

g(D,E) = g(φD, φE) + η(D)η(E) (5)

g(φD,E) = −g(D,φE). (6)

for all vector fields D and E on M .
AK-contact manifold is a contact metric manifold Conversely, a contact metric
manifold is K-contact if and only if the Lie derivative of φin the direction of
the characteristic vector field ξ vanishes identically, i.e., identically .
A Sasakian manifold is a always a K-conatct manifold. vanishes identically,
K-contact manifold is Sasakian manifold.
It is well known that a contact metric manifold is Sasakian if and only if

R(D,E)ξ = η(E)D − η(D)E. (7)

In a Sasakian manifold equipped with the structure (φ, ξ, η, g), the following
relations also hold [4]:

(∇Dη)E = g(D,φE) (8)
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R(ξ,D)E = g(D,E)ξ − η(E)D (9)

Ric(D, ξ) = (n− 1)η(D) (10)

R(D, ξ)E = η(E)D − g(D,E)ξ (11)

Qξ = (n− 1)ξ. (12)

3 Main results

3.1 Some properties of Sasakian manifold admitting gen-
eral connection

Proposition 3.1 Let M be an n−dimensional Sasakian manifold equipped
with a general connection ∇G. Then:

1. the curvature tensor RG of ∇G is given by equation (13).

2. the Ricci tensor RicG of ∇G is given by equation (14).

3. the scalar curvature rG of ∇G is given by equation (17).

4. the Ricci tensor RicG of ∇G is symmetric.

Proof: Let the curvature tensor RG corresponding to the general connection
∇G be defined by RG(D,E)F = ∇G

D∇G
EF −∇G

E∇G
DF −∇G

[D,E]F

for all D,E, F ∈ χ(M). Using equations (2) and (5) through (11)together with
the definition above, we obtain the expression for the Riemannian curvature
tensor with respect to the general connection ∇G as follows:

RG(D,E)F = R(D,E)F + (K1 +K2 −K1K2)((g(D,F )η(E) (13)

− g(E,F )η(D))ξ + (η(D)E − η(E)D)η(F ))

+ (2K1 −K2
1)g(D,φF )φE + 2K2(g(D,φE)φF ).

Consequently, one can easily bring out the following results:

RicG(E,F ) = Ric(E,F ) + (K1(1−K1) +K2(K1 + 1))g(E,F ) (14)

+ (K1(K1 − n) + (n− 2)K1K2 − nK2)η(E)η(F ),

RicG(E, ξ) = (n− 1)(1−K1 −K2 +K1K2)η(E), (15)
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QGE = QE + (K1(1−K1) +K2(K1 + 1))E (16)

+ (K1(K1 − n) + (n− 2)K1K2 − nK2)η(E)ξ,

rG = r − (n− 1)K2
1 + 2(n− 1)K1K2, (17)

RG(D,E)ξ = (K1K2 −K1 −K2 + 1)(η(E)D − η(D)E), (18)

RG(ξ, E)F = (K1K2 −K1 −K2 + 1)(g(E,F )ξ − η(F )E), (19)

RG(D, ξ)F = (K1 +K2 −K1K2 − 1)(g(D,F )ξ − η(F )D). (20)

Theorem 3.2 If a Sasakian manifold M is Ricci flat with respect to the gen-
eral connection ∇G, then M is an η-Einstein manifold.
Proof: Assume that the Sasakian manifold M is Ricci flat with respect to the
general connection ∇G, then from (14), the Ricci tensor takes the form:

Ric(E,F ) = (K1(1−K1) +K2(K1 + 1))g(E,F ) + (K1(K1 − n)

+ (n− 2)K1K2 − nK2)η(E)η(F ),

which shows that M is an η-Einstein manifold.

3.2 M-Projectively flat Sasakian manifold with respect
to the general connection

Theorem 3.3 Let M be an n-dimensional Sasakian manifold with M(n > 2)
that is M-projectively flat with respect to the general connection ∇G. Then M
is an η−Einstein manifold.
Proof: Let M be an n-dimensional M-projectively flat Sasakian manifold with
respect to general connection, i.e., MG = 0. Then from (3), we have

RG(D,E)F =
1

2(n− 1)
[RicG(E,F )D −RicG(D,F )E] (21)

+
1

2(n− 1)
[g(E,F )QGD −G(D,F )QGE].

Taking the inner product of equation (21) with a vector field V, and then con-
tracting over the vector fields D and V, we obtain:

nRicG(E,F ) = g(E,F )rG. (22)

Using equations (14), (17) in (22), we obtain:

Ric(E,F ) =
1

n
(r + (K1 − n)K1 − nK2 + (n− 2)K1K2)g(E,F )

+ (n(K1 +K2)−K2
1 + (2− n)K1K2)η(E)η(F ).

Hence, M is an η-Einstein manifold.



M -Projective Curvature Tensor in Sasakian ... 75

Theorem 3.4 Let M be an n-dimensional Sasakian manifold with (n > 2)
which is ξ − M-projectively flat with respect to the general connection ∇G

Sasakian manifold. Then M is an η-Einstein manifold.
Proof: If M(n > 2) is ξ − M−projectively flat with respect to the general
connection,
i.e., MG(D,E)ξ = 0, for all vector fields D,E ∈ χ(M).
Then, from (3), we have

RG(D,E)ξ =
1

2(n− 1)
[RicG(E, ξ)D −RicG(D, ξ)E + η(E)QGD − η(D)QGE].

Taking the inner product of this equation with an arbitrary vector field V, it
follows that

(K1K2 −K1 − K2 + 1)(η(E)g(D, V )− η(D)g(E, V )) (23)

=
1

2(n− 1)
(RicG(E, ξ)g(D, V )−RicG(D, ξ)g(E, V )

+ η(E)g(QGD, V )− η(D)g(QGE, V )).

Setting E = ξ and using equations (15) and (16) in (23), we get

Ric(D, V ) = ((n− 2)K1K2 + (n− 1)− nK1 − nK2 +K2
1)g(D, V ) (24)

+ (n(K1 +K2) + (2− n)K1K2 −K2
1)η(D)η(V ).

Therefore, M is an η-Einstein manifold.

Corollary 3.5 If a Sasakian manifold M(n > 2) admits a general connection
∇G is ξ −M−projectively flat, then its scalar curvature r is constant.

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at an
arbitrary point M. Setting E = F = ei in the equation (24) and summing over
i, 1 ≤ i ≤ n, we obtain: r = (n− 1)K2

1 + (n2 − 3n+ 2)K1K2 + n(1− n)(K1 +
K2 − 1),
which is constant.

Theorem 3.6 An n−dimensional Sasakian manifold is ξ − M−projectively
flat with respect to the general connection if and only if it is so with respect to
Levi-civita connection, provided that the vector fields involved are horizontal.
Proof: Using equations (14) and (16), we have

MG(D,E)F = M(D,E)F + (K1 +K2 −K1K2)(g(D,F )η(E)ξ − g(E,F )η(D)ξ)

+ (K2
1 − 2K1)(g(E, φF )φD − g(D,φF )φE) + (K1K2 −K1 −K2)(η(E)η(F )D

− η(D)η(F )E) + 2K2g(D,φE)φF − 1

2(n− 1)

[
2(K1(1−K1) +K2(K1 + 1))

× g(E,F )D − g(D,F )E
]

+ (K1(K1 − n) + (n− 2)K1K2 − nK2)(η(E)η(F )D

− η(D)η(F )E + η(D)g(E,F )ξ − η(E)g(D,F )ξ).

(25)
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Setting F = ξ in (25), we obtain

MG(D,E)ξ = M(D,E)ξ + (K1K2 −K1 −K2)(η(E)D − η(D)E)

− 1
2(n−1)

((2− n)K1 + (2− n)K2 + nK1K2 −K2
1)(η(E)D − η(D)E).

If D and E are horizantal vector fields (i.e., η(D) = η(E) = 0), then from
above equation above it follows that MG(D,E)ξ = M(D,E)ξ. That is, the
ξ −M-projective curvature tensors with respect to the general connection and
the Levi-Civita connection coincide when evaluated on horizontal vector fields.

Theorem 3.7 A Sasakian manifold M(n > 2) is locally M-projectively φ-
symmetric with respect to the general connection ∇G if and only if it is so with
respect to Levi-civita connection.
Proof: Using (2), we have

(∇G
VM

G)(D,E)F = (∇VM
G)(D,E)F +K1g(V, φMG(D,E)F )ξ

+K1η(MG(D,E)F )φV +K2η(V )φMG(D,E)F −K1g(V, φD)MG(ξ, E)F

−K1η(D)MG(φV,E)F − η(V )K2M
G(φD,E)F −K1g(V, φE)MG(D, ξ)F

−K1η(E)MG(D,φV )F −K2η(V )MG(D,φE)F −K1g(V, φF )MG(D,E)ξ

−K1η(F )MG(D,E)φV −K2η(V )MG(D,E)φF.

(26)

By differntiating (2), (13), (14), and (16) with respect to V, we obtain:

(∇VM
G)(D,E)F = (∇VR

G)(D,E)F − 1

2(n− 1)
[(∇VRic

G)(E,F )D

− (∇VRic
G)(D,F )E + g(E,F )(∇VQ

G)D − g(D,F )(∇VQ
G)E],

(27)

(∇VR
G)(D,E)F = (∇VR)(D,E)F + (K1 +K2 −K1K2)(g(D,F )g(V, φE)ξ

− g(D,F )η(E)φV − g(E,F )g(V, φD)ξ + g(E,F )η(D)φV + g(V, φD)η(F )E

+ g(V, φF )η(D)E − g(V, φE)η(F )D − η(E)g(V, φF )D) + 2K2(g(V,E)η(D)φF

− η(E)g(D, V )φF + g(D,φE)g(V, F )ξ − g(D,φE)η(F )V ) + (K2
1 − 2K1)

× (g(V, φF )η(E)φD − η(F )g(E, V )φD + g(E, φF )g(V, φD)ξ − g(E, φF )η(D)V

− g(V, φF )η(D)φE + η(F )g(D, V )φE − g(D,φF )g(V, φE)ξ + g(D,φE)ξ

+ g(D,φF )η(E)V ),

(28)

(∇VRic
G)(E,F ) = (∇VRic)(E,F ) + (K1(K1 − n) + (n− 2)K1K2 (29)

− nK2)(g(V, φE)η(F ) + g(V, φF )η(E)),

(∇VQ
G)D = (∇VQ)D + (K1(K1 − n) + (n− 2)K1K2 (30)

− nK2)(g(V, φD)ξ − η(D)φV ),
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respectively.
Now combining the equations (27)-(30), we obtain:

(∇VM
G)(D,E)F = (∇VR)(D,E)F + (K1 +K2 −K1K2)(g(D,F )(g(V, φE)ξ

− η(E)φV )− g(E,F )(g(V, φD)ξ − η(D)φV ) + g(V, φD)η(F )E + g(V, φF )

× η(D)E − g(V, φE)η(F )D − g(V, φF )η(E)D) + 2K2((g(E, V )η(D)

− g(D, V )η(E))φF + g(D,φE)(g(V, F )ξ − η(F )V )) + (K2
1 − 2K1)

× ((g(V, φF )η(E)− g(E, V )η(F ))φD + g(E, φF )(g(V, φD)ξ − η(D)V )

+ (g(D, V )η(F )− g(V, φF )η(D))φE + g(D,φF )(η(E)V − g(V, φE)ξ))

− 1

2(n− 1)
[(∇VRic)(E,F )D − (∇VRic)(D,F )E + g(E,F )(∇VQ)D

− g(D,F )(∇VQ)E + (K1(K1 − n) + (n− 2)K1K2 − nK2)(g(V, φE)η(F )D

− g(V, φD)η(F )E) + g(V, φF )(η(E)D − η(D)E) + g(E,F )(g(V, φD)ξ

− η(D)φV ) + g(D,F )(η(E)φV − g(V, φE)ξ)].

(31)

Now differentiating (1) with respect to V, we have

(∇VM)(D,E)F = (∇VM)(D,E)F − 1

2(n− 1)
[(∇VRic)(E,F )D (32)

− (∇VRic)(D,F )E + g(E,F )(∇VQ)D − g(D,F )(∇VQ)E].

By use of (31), (32) takes the form

(∇VM
G)(D,E)F = (∇VM)(D,E)F + (K1 +K2 −K1K2)(g(D,F )(g(V, φE)ξ

− η(E)φV )− g(E,F )(g(V, φD)ξ − η(D)φV ) + g(V, φD)η(F )E + g(V, φF )

× η(D)E − g(V, φE)η(F )D − g(V, φF )η(E)D) + 2K2((g(E, V )η(D)

− η(E)g(D, V ))φF + g(D,φE)(g(V, F )ξ − η(F )V )) + (K2
1 − 2K1)

× ((g(V, φF )η(E)− g(E, V )η(F ))φD + g(E, φF )(g(V, φD)ξ − η(D)V )

− (g(V, φF )η(D)− g(D, V )η(F ))φE)− (g(D,φF )(g(V, φE)ξ − η(E)V ))

− 1

2(n− 1)
[(K1(K1 − n) + (n− 2)K1K2 − nK2)((g(V, φE)D − g(V, φD)E)

× η(F ) + g(V, φF )(η(E)D − η(D)E) + g(E,F )(g(V, φD)ξ − η(D)φV )

+ g(D,F )(η(E)φV − g(V, φE)g(D,F )ξ))]

(33)
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Applying φ2 to both sides of equation (26), we obtain:

φ2(∇G
VM

G)(D,E)F = φ2(∇VM
G)(D,E)F −K1η(MG(D,E)F )φV +K2η(V )

× φ2(φ(MG(D,E)F ))−K1η(D)φ2MG(φV,E)F −K1η(E)φ2MG(D,φV )F

−K1η(F )φ2MG(D,E)φV −K2η(V )φ2MG(D,E)φF +K1g(V, φD)η(F )φE

−K1g(V, φ2E)η(F )φ2D + (K1 +K2 −K1K2)(K1g(V, φD)η(F )φ2E

+K1g(V, φE)η(F )φ2D)− 1

2(n− 1)

[
2nK1g(V, φE)η(F )(φ2E + φ2D)

+ (K1(1−K1) +K2(K1 + 1))2K1η(F )g(V, φE)(φ2E − φ2D) + (K1(K1 − n)

+ (n− 2)K1K2 − nK2)(K1g(V, φD)η(F ))(φ2E + φ2(QE))−K1g(V, φE)η(F )

× (φ2D + φ2(QD))

]
−K1g(V, φF )((η(D)φ2E − η(E)φ2D)(K1 +K2 −K1K2

− 1)− 1

2(n− 1)

[
2n(η(E)φ2D − η(D)φ2E)(K1(1−K1) +K2(K1 + 1)

+K1(K1 − n) + (n− 2)K1K2 − nK2 + 2)

]
,

(34)

Using equation (33) and assuming that the vector fields D, E, F and V are
orthogonal to ξ, we obtain:

φ2(∇G
VM

G)(D,E)F = φ2(∇VM)(D,E)F.

Hence the theorem.

Theorem 3.8 A pseudo-M-projectively flat Sasakian manifold with respect to
the general connection is an η−Einstein manifold with respect to the Levi-
Civita connection.
Proof: Assume that a Sasakian manifold M is pseudo-M-projectively flat with
respect to the general connection, i.e, g(MG(φD,E)F, φW ) = 0, for all vector
fields D,E, F,W ∈ χ(M).
Then in view of (3), we have:

RG(φD,E, F, φW ) =
1

2(n− 1)
[RicG(E,F )g(φD, φW )−RicG(φD,F )g(E, φW )

+ g(E,F )RicG(φD, φW )− g(φD,F )RicG(E, φW )].

(35)

Let (ei, ξ)(1 ≤ i ≤ n − 1) be a local orthonormal basis of the tangent space at
an arbitrary point of the manifold M. Since (φei, ξ)(1 ≤ i ≤ n− 1) also forms
a local orthonormal basis, we set D = W = ei and taking summation over i
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(1 ≤ i ≤ n− 1) in (35), then we obtain:

RG(φei, E, F, φei) =
1

2(n− 1)
[
n−1∑
i=1

RicG(E,F )g(φei, φei)−
n−1∑
i=1

RicG(φei, F )g(E, φei)

+
n−1∑
i=1

g(E,F )RicG(φei, φei)−
n−1∑
i=1

g(φei, F )RicG(E, φei)].

From which we obtain:

Ric(E,F ) = ag(E,F ) + bη(D)η(E),

where a = 1
n+2

[(n−4)(K1(1−K1)+K2(K1+1))+r−(n−1)−2(n−1)(K1(1−
K1) + K2(K1 + 1))] and b = −2(n−1)

(n+2)
[(K1(1 −K1) + K2(K1 + 1)) + K1(K1 −

n) + (n− 2)K1K2 − nK2].
Therefore, M is an η−Einstein manifold.

4 Example

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R}, where (x, y, z)
are the standard coordinates on R3. Let e1, e2, e3 be a linearly independent
frame field on M , given by:

e1 = ez
∂

∂x
, e2 = ez

∂

∂y
, e3 =

∂

∂z
,

which is linearly independent at each point of M and hence form a basis of
the tangent space TpM . Let g be the Riemannian metric on M defined by:

g(ei, ej) =

{
1 if i = j

0 if i 6= j.

Let η be the 1-form on M defined by η(D) = g(D, e3) for any vector field
D ∈ χ(M). Define the (1, 1)-tensor field φ by

φe1 = e1, φe2 = e2, φe3 = 0.

By the linearity of both φ and g we have

φ2D = −D + η(D)ξ, η(D) = g(D, ξ),

g(φD, φE) = g(D,E)− η(D)η(E).
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Now, by direct computations, we can easily see that

[e1, e2] = 0, [e1, e3] = −e1, [e2, e3] = −e2.

Furthermore, by ∇, we denote the Levi-civita connection on M, by using
Koszul’s formula, we can calculate, easily

∇e1e1 = e3, ∇e2e1 = 0, ∇e3e1 = 0,

∇e1e2 = 0, ∇e2e2 = e3, ∇e3e2 = 0,

∇e1e3 = −e1, ∇e2e3 = −e2, ∇e3e3 = 0.

From the above resuts we see that the structure (φ, ξ, η, g) satisfies (∇Dφ)E =
g(D,E)ξ−η(E)D, ∀D,E ∈ χ(M3), where η(ξ) = η(e3) = 1. Hence (φ, ξ, η, g) is
a 3−dimensional Sasakian manifold. The non zero components of Riemannian
curvature tensor with respect to Levi-civita connection ∇ are given by:

R(e1, e2)e1 = e2, R(e1, e3)e1 = e3, R(e2, e3)e1 = 0,

R(e1, e2)e2 = −e1, R(e1, e3)e2 = 0, R(e2, e3)e2 = e3,

R(e1, e2)e3 = 0, R(e1, e3)e3 = −e1, R(e2, e3)e3 = −e2.

Using the general connection ∇G defined by equation (2), the covariant deriva-
tives are computed as

∇G
e1
e1 = (1 +K1)e3, ∇G

e2
e1 = 0, ∇G

e3
e1 = K2e1,

∇G
e1
e2 = 0, ∇G

e2
e2 = (1 +K1)e3, ∇G

e3
e2 = K2e2,

∇G
e1
e3 = (K1 − 1)e1, ∇G

e2
e3 = (K1 − 1)e2, ∇G

e3
e3 = 0.

The non zero components of Riemannian curvature tensor with respect to
general connection are given by:

RG(e1, e2)e1 = (1−K2
1)e2, RG(e1, e3)e1 = (K1 + 1)(1 +K2)e3, RG(e2, e3)e1 = 0,

RG(e1, e2)e2 = (K2
1 − 1)e1, RG(e1, e3)e2 = 0, RG(e2, e3)e2 = (1 +K1)(1 +K2)e3,

RG(e1, e2)e3 = 0, RG(e1, e3)e3 = (K1 − 1)(1−K2)e1, RG(e2, e3)e3 = (K1 − 1)(1−K2)e2.

Using the above curvature tensor the Ricci tensors with respect to ∇ and ∇G

are: Ric(e1, e1) = Ric(e2, e2) = Ric(e3, e3) = −2.

RicG(e1, e1) = K1(K1 + 1) +K2(1−K1)− 2 = RicG(e2, e2),
RicG(e3, e3) = −2(K1 +K2 +K1K2 + 1).
Finally, from these expressions, one verifies that
MG(e1, e2)e3 = 0.
which confirms that the manifold M is ξ-projectively flat with respect to the
general connection.
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5 Open Problem

An open problem is to identify Sasakian manifolds that naturally arise in con-
tact and CR geometry, extending the analysis to contact metric manifolds or
almost contact manifolds with a general connection could bridge results across
related geometric structures.
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Krümmungstheorie nichtholonomer Gebilde, Mathematische Annalen,
103, (1930), 752-783.

[10] J. P. Singh, On an Einstein m-projective P -Sasakian manifolds, Bull. Cal.
Math. Soc, 101(2), (2009), 175-180.

[11] S. Tanno, The automorphism groups of almost contact Riemannian man-
ifolds, Tohoku Mathematical Journal, Second Series, 21(1), (1969), 21-38.



82 Pavithra R C and H G Nagaraja

[12] S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of
Global Analysis and Geometry 36(1), (2009), 37-60.


