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Abstract

Soft set theory is one of the recent generalizations to deal
with uncertainty concepts. Soft-rough sets emerged on the fu-
sion of soft sets and rough sets. Recently, square soft-rough
matrices were introduced as an extension of soft-rough matri-
ces. This study further expands them into square soft-rough
fuzzy matrices (s-s-r fm) and explores some of their key prop-
erties.
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1 Introduction

Uncertainty is tackled using several tools starting from probability theory to
the recent innovative idea namely soft sets. Pawlak’s rough set (r-s-t ) theory
[9] defines uncertainty using boundary regions instead of membership func-
tions. Vijayabalaji and Balaji [14] developed rough matrices based on rough
membership functions and proposed a decision-making framework. Molodtsov
[7] highlighted the limitations of existing models, including rough sets and
introduced soft sets (s-s-t) as a mathematical tool to improve uncertainty rep-
resentation. These sets enable flexible descriptions using elements like real
numbers, functions, and linguistic variables. Maji and Roy [5] applied soft
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sets to decision-making, while Wille [15] represented property systems in a bi-
nary structure. Several researchers [3, 9, 11, 12, 17] investigated these systems
and their role in data analysis.

Cagman [1, 2] introduced a decision-making approach using soft matrices,
demonstrating their efficiency in representing s-s-t for computational storage
and processing. Vijayabalaji and Ramesh [13] explored product soft matrices
and their application in decision-making. Feng Feng [4, 5] studied hybrid mod-
els combining r-s-t and s-s-t, leading to soft-rough sets ( s-r-s), which redefine
uncertainty handling using soft approximations instead of Pawlak’s rough set
boundaries.

Vijayabalaji [15] introduced the idea of soft-rough matrices (s-s-r -m) by
assigning three values corresponding to the three regions notified in soft-rough
sets ( s-r-s). These matrices offer an improved method for analyzing uncer-
tainty. He then recently generalized it to square soft-rough matrices [15].
Generalized s-s-r-m can be viewed in [8]. In the present paper, section 2 dis-
cusses the need for square soft-rough fuzzy matrices, while Section 3 introduces
these matrices along with essential concepts and operational principles. Sec-
tion 4 introduces two types of product operations on square soft-rough fuzzy
matrices namely ∧ and ∨ operations. The union and intersection of these ma-
trices are explained clearly for better comprehension. Furthermore, essential
theorems related to these product operations are presented, highlighting their
mathematical significance.

2 Need of square soft-rough fuzzy matrices

This study expands the concept further by introducing square soft-rough
fuzzy matrices (s-s-r f-m) and analyzes their key properties. A square soft-
rough fuzzy matrix is structured ( s-s-r f-m) as an n× n matrix. The primary
advantage of using this format lies in its symmetry and uniformity, which
simplify various mathematical operations and analyses. Because of its balanced
structure, computations become more efficient, and the relationships between
data elements are easier to interpret.

Furthermore, the structured nature of square soft-rough matrices en-
hances their usefulness in mathematical and computational models. Their
adaptability allows them to be applied in different fields, offering a more sys-
tematic approach in handling uncertainty and decision-making processes.
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2.1 Advantages of square soft-rough fuzzy matrices
over square soft-rough matrices

Square soft-rough fuzzy matrices offer an advanced approach by incorporat-
ing fuzzy principles into square soft-rough matrices. While square soft-rough
matrices maintain a structured n× n format for balanced computations, they
rely on crisp classifications, which may not fully capture the uncertainty in-
volved. By introducing fuzzy membership values, square soft-rough fuzzy ma-
trices provide a more refined method to represent imprecise data, allowing for
a smoother transition between categories. This flexibility enhances decision-
making in situations where rigid classifications may lead to information loss.

Additionally, the integration of fuzziness improves computational stabil-
ity by reducing abrupt shifts in classifications. This makes square soft-rough
fuzzy matrices more suitable for handling complex datasets, such as those in
medical diagnosis, financial analysis, and pattern recognition. Their adapt-
ability ensures better results when working with dynamic information, making
them a more effective tool for uncertainty management in mathematical and
computational applications.

Throughout this paper let Ù , È , À P (Ù)denote the universe set, param-
eters set, subset of a parameter set and power set of the universe set, respec-
tively.

Definition 2.1 [18]. A fuzzy set is defined as a membership function from
Ù → [0, 1].

Definition 2.2 [10]. Consider a binary relation R ⊆ Ù × Ù . R is called
as indiscernibility relation. Assuming R as an equivalence relation the pair
(Ù , R) is called a rough approximation space. Let X̀ ⊆ Ù , R(x) denotes the
equivalence class of R and is determined by the elements of X̀. We define two
approximations as follows.
R∗(X̀) = {x ∈ Ù : R(x) ⊆ X̀},

R∗(X̀) = {x ∈ Ù : R(x) ∩ X̀ 6= ∅},

BNR(X̀) = R∗(X̀)−R∗(X̀) is called the boundary region of X̀.
A set X̀ is called crisp with respect to the binary relation R if and only if the
boundary region of X̀ is empty. A set X̀ is called rough with respect to the
binary relation R if and only if the boundary region of X̀ is non-empty.

Definition 2.3 [7]. A s-s-t is defined as a mapping from À→ P (Ù).

Definition 2.4 [5]. For a given soft set = = (F,A) over Ù with the soft
approximation space P = (Ù ,=), two operations are presented as follows.
apr

P
(X̀) = {u ∈ Ù : ∃a ∈ A, (u ∈ f(a), f(a) ⊆ X̀)},
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aprP (X̀) = {u ∈ Ù : ∃a ∈ A, (u ∈ f(a), f(a) ∩ X̀ 6= φ)},
assigning to every subset X̀ ⊆ Ù two sets apr

P
(X̀) and aprP (X̀) termed as

lower and upper soft rough approximations of X̀ in P , respectively. In addi-
tion,
PTVP (X̀) = apr

P
(X̀), NTVP (X̀) = Ù − aprP (X̀), BDRYP (X̀) = aprP (X̀)−

apr
P

(X̀) are called the soft positive, soft negative and soft boundary regions

of X, respectively. If apr
P

(X̀) = aprP (X̀), X̀ is said to be soft definable;

otherwise X̀ is called a soft rough set.

Definition 2.5 [15]. A function defined by CSR : Ù → {0, 0.5, 1} over s-r-s is
termed as s-s-r m.

Definition 2.6 [ 16]. A function defined by ISR : Ù → {0, 0.5, 1} over
s-r-s is termed as s-s-r m.

3 Square soft-rough fuzzy matrices

This section presents the concept of square soft-rough fuzzy matrices with de-
tailed explanations, along with essential definitions and theorems to enhance
clarity and understanding.

Definition 3.1. A fuzzy set ISR : Ù → [0, 1]} over s-r-s is termed as square
soft-rough fuzzy matrix (s-s-r f-m) and denoted by $SRF . In particular $SRF

takes the value 1, if u ∈ PTVp(X̀), 0 if u ∈ NTVp(X̀) and ζ if u ∈ BDRYp(X̀),
with ζ ∈ (0, 1).

So, $SRF = (%̀xy)nn.

Example 3.2. Let Ù = {ε1, ε2, ε3, ε4, ε5, ε6} and È = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6}.
Let = = (F,E) be a soft set over Ù with the following table:

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ε1 1 0 0 1 0 0
ε2 0 0 0 1 0 0
ε3 0 1 0 0 0 0
ε4 0 0 0 0 0 0
ε5 0 0 0 1 0 0
ε6 1 0 0 0 0 0

For X̀ = {ε3, ε4, ε5} ⊂ Ù , we have apr
P

(X̀) = {ε3} and aprP (X̀) = {ε1, ε2, ε3, ε5}.

Further PTVP (X̀) = {ε3}, NTVP (X̀) = {ε4, ε6} andBDRYP (X̀) = {ε1, ε2, ε5}.
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Define a fuzzy set from $SRF1 : Ù → [0, 1]. Then our desired s-s-r fm is,

$SRF1 =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ε1 ζ ζ ζ ζ ζ ζ
ε2 ζ ζ ζ ζ ζ ζ
ε3 1 1 1 1 1 1
ε4 0 0 0 0 0 0
ε5 ζ ζ ζ ζ ζ ζ
ε6 0 0 0 0 0 0

The elements are placed as per Definition 3.1.

Example 3.3. Let = = (F,A) be a soft set over U as in Example 3.2 with
the same table.

Choose X̀ = {ε1ε2, ε3} ⊂ Ù . Then we have apr
P

(X̀) = {ε3} and aprP (X̀) =
{ε1, ε2, ε3, ε5, ε6}

Further PTVP (X̀) = {ε3}, NTVP (X̀) = {ε4} andBDRYP (X̀) = {ε1, ε2, ε5, ε6}.

Define a fuzzy set from $SRF2 : Ù → [0, 1]. Then our desired s-s-r f-m is,

$SRF2 =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ε1 ζ ζ ζ ζ ζ ζ
ε2 ζ ζ ζ ζ ζ ζ
ε3 1 1 1 1 1 1
ε4 0 0 0 0 0 0
ε5 ζ ζ ζ ζ ζ ζ
ε6 ζ ζ ζ ζ ζ ζ

Definition 3.4.
(i) Consider two soft-rough fuzzy matrices namely [%xy] and [ςxy] ∈ $SRF .
Then their intersection is defined by [%xy] ∩ [ςxy] = min{%xy, ςxy}.
(ii) Consider two soft-rough fuzzy matrices namely [%xy] and [ςxy] ∈ $SRF .
Then their union is defined by [%xy] ∪ [ςxy] = max{%xy, ςxy}.

Example 3.5. Consider the above Examples 3.2 and 3.3. Then
$SRF1 ∩$SRF2

= [%xy] ∩ [ςxy]
= min{%xy, ςxy}
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=

e1 e2 e3 e4 e5 e6
u1 ζ ζ ζ ζ ζ ζ
u2 ζ ζ ζ ζ ζ ζ
u3 1 1 1 1 1 1
u4 0 0 0 0 0 0
u5 ζ ζ ζ ζ ζ ζ
u6 0 0 0 0 0 0

and
$SRF1 ∪$SRF2

= [%xy] ∪ [ςxy]
= min{%xy, ςxy}

e1 e2 e3 e4 e5 e6
u1 ζ ζ ζ ζ ζ ζ
u2 ζ ζ ζ ζ ζ ζ
u3 1 1 1 1 1 1
u4 0 0 0 0 0 0
u5 ζ ζ ζ ζ ζ ζ
u6 ζ ζ ζ ζ ζ ζ

4 Product opertions on square soft-rough fuzzy

matrices

In this section two product operations on square soft-rough fuzzy matrices,
namely ∧ and ∨ operations, are introduced. Their union and intersection
are then defined clearly for better understanding. Additionally, key theorems
related to these product operations are presented, highlighting their mathe-
matical significance.

Definition 4.1. Consider two soft-rough fuzzy matrices namely [(%̀xy] and
[ς̀xy] ∈ $̀SRF . Then the ∧- product operations of [(%̀xy] and [ς̀xy] is defined by
∧ : [%̀xy]× [ς̀yz] → [$̀xz]

2, termed as ∧$̀xz- square soft - rough fuzzy matrices
or simply ∧$̀xz, where $̀xz =min{%̀xy, ς̀yz}.

Definition 4.2. Consider two soft-rough fuzzy matrices namely [%̀xy] and
[ς̀xy] ∈ $̀SRF . Then the ∨- product operations of [%̀xy] and [ς̀xy] is defined by
∨ : [%̀xy]× [ς̀yz] → [$̀xz]

2, termed as ∨$̀xz- square soft - rough fuzzy matrices
or simply ∨$̀xz,where $̀xz =max{ %̀xy, ς̀yz}.

Definition 4.3. Consider two ∧$xz- square soft-rough fuzzy matrices namely
∧1$xz and ∧2$xz. Then
(i) ∧1$xz ∪ ∧2$xz= max{∧1$xz,∧2$xz}
(i) ∧1$xz ∩ ∧2$xz= min{∧1$xz,∧2$xz}.
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Definition 4.4. Consider two ∨$xz- square soft-rough fuzzy matrices namely
∨1$xz and ∨2$xz. Then
(i) ∨1$xz ∪ ∨2$xz= max{∨1$xz,∨2$xz}
(i) ∨1$xz ∩ ∨2$xz= min{∨1$xz,∨2$xz}.

Theorem 4.5. Consider two ∧$xz- square soft-rough fuzzy matrices namely
∧1$xz and ∧2$xz. Then
(i) ∧1$xz ∪ ∧2$xz = ∧2$xz ∪ ∧1$xz

(ii) ∧1$xz ∩ ∧2$xz = ∧2$xz ∩ ∧1$xz

(iii) ∨1$xz ∪ ∨2$xz = ∨2$xz ∪ ∨1$xz

(iv) ∨1$xz ∩ ∨2$xz = ∨2$xz ∩ ∨1$xz

Proof.
(i) Consider
∧1$xz ∪ ∧2$xz

=max{∧1$xz,∧2$xz}
=max{∧2$xz,∧1$xz}
=∧2$xz ∪ ∧1$xz.

(ii) Also
∧1$xz ∩ ∧2$xz

=min{∧1$xz,∧2$xz}
=min{∧2$xz,∧1$xz}
=∧2$xz ∩ ∧1$xz.

(iii) Now
∨1$xz ∩ ∨2$xz

=max{∨1$xz,∨2$xz}
=max{∨2$xz,∨1$xz}
=∨2$xz ∩ ∨1$xz.

(iv) Also
∨1$xz ∩ ∨2$xz

=min{∨1$xz,∨2$xz}
=min{∨2$xz,∨1$xz}
=∨2$xz ∩ ∨1$xz.

Theorem 4.6. Consider three ∧$xz- square soft-rough fuzzy matrices
namely ∧1$xz, ∧2$xz and ∧3$xz respectively. Then
(i) (∧1$xz ∪ ∧2$xz) ∪ ∧3$xz = ∧1$xz ∪ (∧2$xz ∪ ∧3$xz)
(ii) (∧1$xz ∩ ∧2$xz) ∩ ∧3$xz = ∧1$xz(∧2$xz ∩ ∧3$xz)
(iii) (∨1$xz ∪ ∨2$xz) ∪ ∨3$xz = ∨1$xz(∨2$xz ∪ ∨3$xz)
(iv) (∨1$xz ∩ ∨2$xz) ∩ ∨3$xz = ∨1$xz(∨2$xz ∩ ∨3$xz)
Proof.
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(i) (∧1$xz ∪ ∧2$xz) ∪ ∧3$xz

= max {∧1$xz,∧2$xz} ∪ ∧3$xz

= max {max{∧1$xz,∧2$xz},∧3$xz}
= max {∧1$xz,max{∧2$xz,∧3$xz}}
= ∧1$xz ∪max{(∧2$xz ∪ ∧3$xz)}
= ∧1$xz ∪ (∧2$xz ∪ ∧3$xz).

ii) (∧1$xz ∩ ∧2$xz) ∩ ∧3$xz

= min {∧1$xz,∧2$xz} ∩ ∧3$xz

= min {max{∧1$xz,∧2$xz},∧3$xz}
= min {∧1$xz,max{∧2$xz,∧3$xz}}
= ∧1$xz ∩max{(∧2$xz ∩ ∧3$xz)}
= ∧1$xz ∩ (∧2$xz ∩ ∧3$xz).

Similarly we can prove (iii) and (iv).

Theorem 4.7. Consider three ∧$xz- square soft-rough fuzzy matrices
namely ∧1$xz, ∧2$xz and ∧3$xz respectively. Then
(i) (∧1$xz ∪ ∧2$xz) ∩ ∧3$xz = (∧1$xz ∩ ∧3$xz) ∪ (∧2$xz ∩ ∧3$xz)
(ii) (∧1$xz ∪ ∧2$xz) ∩ ∧3$xz = (∧1$xz ∩ ∧3$xz) ∪ (∧2$xz ∩ ∧3$xz)
(iii) (∧1$xz ∪ ∧2$xz) ∩ ∧3$xz = (∧1$xz ∩ ∧3$xz) ∪ (∧2$xz ∩ ∧3$xz)
(iv) (∧1$xz ∪ ∧2$xz) ∩ ∧3$xz = (∧1$xz ∩ ∧3$xz) ∪ (∧2$xz ∩ ∧3$xz)
Proof.
(i) (∧1$xz ∪ ∧2$xz) ∩ ∧3$xz

= max {∧1$xz,∧2$xz} ∩ ∧3$xz

= min {max{∧1$xz,∧2$xz},∧3$xz}
= max {min{∧1$xz,∧3$xz},min{∧2$xz,∧3$xz}}
=max{∧1$xz ∩ ∧3$xz,∧2$xz ∩ ∧3$xz}
= (∧1$xz ∩ ∧3$xz) ∪ (∧2$xz ∩ ∧3$xz).

(ii) (∧1$xz ∩ ∧2$xz) ∪ ∧3$xz

= min {∧1$xz,∧2$xz} ∪ ∧3$xz

= max {min{∧1$xz,∧2$xz},∧3$xz}
= min {max{∧1$xz,∧3$xz},max{∧2$xz,∧3$xz}}
=min{∧1$xz ∪ ∧3$xz,∧2$xz ∪ ∧3$xz}
= (∧1$xz ∪ ∧3$xz) ∩ (∧2$xz ∪ ∧3$xz).

Similarly we can prove (iii) and (iv).

5 Conclusion

This paper explores square soft-rough fuzzy matrices (s-s-r f-m) and presents
key theorems and results associated with them. It also examines joint and
meet operations, providing insights into their mathematical properties and
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applications.

6 Open Problem

This research opens several avenues for further exploration.
(1) Can the inverse of s-s-r f-m be systematically determined.
(2) How can the determinant and adjoint of s-s-r f-m be defined and analyzed
in a structured manner.
(3) Is there a way to develop efficient computational techniques for operations
on s-s-r f-m.
(4) How does different types of fuzzy and rough approximations impact the
structure and properties of s-s-r f-m.
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