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Abstract

The problematic phenomena of an apparently uninten-
tional beating and the potential collapse of shafts in power
transmission systems was discovered by motor ship construc-
tors. In this study, we examine a fourth order Ordinary Dif-
ferential Equation (ODE), which shows how the collapse of
shafts in power transmission networks occurs dynamically.
The main focus in this work is to examine and find the solu-
tion to the wave equation arising due to collapse of shafts in
power transmission systems using Lie symmetry.
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1 Introduction

Differential equations are prevalent in various natural phenomena and tech-
nological challenges [5]. These equations pertain to the behaviour of specific
unidentified dependent variables at a particular point, such as time or place.
These mathematical differential equations, which have been defined, possess
solvable derivatives. Multiple endeavors have been undertaken to resolve these
differential equations by employing numerical methods, namely utilizing the
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finite difference approach. Nevertheless, numerical solutions are merely estima-
tions that rely on specific initial boundary conditions [1]. Consequently, they
are not appropriate for resolving problems related to mechanical vibrations
that require precise values. Therefore, this work offers an alternate analytical
approach for solving equations related to the failure of shafts in power trans-
mission systems and other mechanical issues, utilizing Lie symmetry. This has
the potential to enhance understanding in the field of applied mathematics
and serve as a pathway for additional research.
To study nonlinear differential equations and produce their exact and im-
plicit solutions in a fully algorithmic manner, symmetry analysis of differential
equations was created. Lie found that studying the associated vector fields,
or infinitesimal generators, was the most effective method for comprehending
Lie groups because an infinitesimal generator contains all of the information
about transformations. Figuring out the small changes from the symmetry
group gives us the group generator, which is the same as creating the group
[6]. The Lie’s algorithm used to analyze the symmetry of differential equations
was further advanced through the efforts of [10] in the late 1950’s.
According to [11], a differential equation can be made to reveal its symme-
tries which are then used to construct exact solutions [4]. Therefore, it can
be claimed that symmetry approaches connect to a number of ODE-related
subjects, such as the usage of laplace transformation and methods for varying
parameters and indeterminate coefficients [2]. In-terms of applications, this
work is useful in computer science in generating faster algorithms that could
assist engineers in comprehending the oscillation of a vehicle caused by road
fissures. This could facilitate engineers in enhancing the design of automobiles
and other mobile engines.
The conventional integration methods for ODEs, according to Norwegian math-
ematician Lie, derive their solutions using the symmetries of the equations [8]
which can be utilized in solving cyber security issues. Therefore, it is pos-
sible to make any differential equation reveal its symmetries, which are then
utilized to build the exact solutions. Consequently, he came to the realiza-
tion that both techniques might be combined and expanded upon to create a
generic integration process predicated on the differential equation’s invariance
under a continuous set of symmetries[7].

2 Preliminaries and literature review

According to [9], Canonical variables is a strategy that relies on point symme-
tries to build transformations that simplify the equation before solving it. The
first integrals and first order partial differential equation methods are strongly
associated with the canonical variables method. Canonical transformations
can be computed given a symmetry group. enabling the integration of first-
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order ODEs or lowering the order of ODEs of higher order. Furthermore, if a
two-dimensional symmetry group is admitted by a second-order equation, we
can directly modify the variables such that the equation becomes integrable
rather than successively reducing the order. This modification of variables was
dubbed the canonical variables approach by Lie [5].
A collection of variables is designated as canonical by Lie if the equation can
be simplified and allows for integration by quadrature. Let’s look at a set
of transformations that comprise two generators, V1 and V2, in more detail.
If the following relations do not exist: V1 = cV2 where c is a constant; and
(V1, V2) = c1V1+c2V2 where c1 and c2 are also constants, then two infinitesimal
transformations, V1 and V2, are independent of one another. Assuming that
the product may be represented differently by each of the two independent
transformations, the second relation can be made simpler.
Very few equations admit enough point symmetries to allow for reduction to
quadratures in an effort to get around this restriction. One such extension re-
sults from the observation of what are known as hidden symmetries, which are
point symmetries that unintentionally develop. It has been demonstrated that
solutions of certain equations lacking sufficient Lie point symmetries with the
corresponding Lie algebras can be reached through hidden symmetries. Type I
hidden symmetries can arise when an equation’s order is increased, while Type
II hidden symmetries can arise when an equation’s order is decreased [8]. We
provide a comprehensive summary of the research conducted by different aca-
demics about the derivation of equations for fourth-order differential equations
in dynamic motion. Our focus is mostly be on the elucidation of the general
equation and its correlation with the failure of shafts in power transmission
systems.
Regarding prolongations, a systematic programme of applying the Lie con-
tinuous group of transformations methods of up to the third order has been
considered. In our work we have looked up to the fourth order prolongation.
We have applied the fourth extension to expand the wave equation. The work
of [7] studied an ODE with a scalar coefficient which had a given number of
Lie symmetries contained in a total of seven equivalent classes. However in
our work we solve a fourth order ODE with a fourth degree which admits a
second order symmetry [10].
According to [2], Lie developed the idea of continuous groups of transforma-
tions which has been termed as Lie groups; named after him to consolidate
and extend a number of specialized approaches to solving ODEs [1]. Lie’s
work has systematically connected numerous topics and methods in ordinary
differential equations. We now focus on the symmetry group which is one of
the most significant groups in relation to DEs.
The authors in [9] introduced the idea of generalized conditional symmetry and
further expanded on this approach. Group theory is used in all of these tech-
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niques for determining symmetries and related similarity reduction of a given
PDE. The innovative characteristics direct algorithmic approach for identify-
ing similarity reduction of PDEs are completely self-explanatory without the
need for group analysis. A geometrical object’s symmetry is defined by [3], as
a transformation whose action appears to leave the object untouched. He also
used symmetries to classify objects.
Moreover, the work of [8] extended the idea of functions to non-local symme-
tries of DEs. They applied a systematic approach to identify a particular class
of non-local symmetries, known as potential symmetries. Contributors to this
discussion on rotating shafts pointed out that the mapping techniques estab-
lished significantly increased roles to DEs. Many scholars have studied the
equations of shaft collapse as explained in different articles. The solution of a
third order first degree non-linear ODE that arises was considered in the study
of Lie symmetry. In contrast, we examined a fourth order ODE in our study
that is a fourth degree polynomial in y3 and admits second order symmetry.
On the general solution [11] examined novel single generators of Lie point
symmetries that allow an ODE’s order to be reduced once. He used two-point
symmetries to describe a double reduction of order. The work of [8] discovered
first integrals for higher order ODEs and demonstrated how to lower an ODE’s
order by utilizing higher order symmetries. Additionally, he contrasted sev-
eral ODE integration and supplementary techniques. He handled dimensional
analysis in great detail. In order to identify solutions of differential equations,
different aspects of symmetries were described. The author focused on devel-
oping solutions and the first integral that resulted from these symmetries and
integrating factors by using an explicit approach. The author included a full
discussion of dimensional analysis in his work and used examples from phys-
ical and engineering difficulties, such as those involving heat conditions and
wave propagation. He presents the reader with the Backingham pi-theorem,
which presents the idea of invariance. He was able to show how this results in
generalizations by showing how boundary value problems are invariant under
changing scaling. This gets the reader ready to think about differential equa-
tions’ more general invariance under transformation groups.
Many authors were able to establish fundamental ideas about functions and
Lie algebras, which are required in the development of infinitesimal generators
of various orders. He illustrated how, as stated in [1], a Lie group makes con-
tact and higher order transformations easily regarded. This makes it possible
to take differential equation integrating factors into account. He examined a
reduction procedure for ODEs that lowers their nth order to r quadrative and
a (n − r)th symmetries [7]. He demonstrated the process of locating higher
order, acknowledged point, and contact symmetries. Additionally, he demon-
strated how to expand the reduction process to include symmetries and use
corresponding to identify admitted first integrals. utilizing initial integrals to
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get order reductions and integrating factors.
This greatly broadens and streamlines the traditional theorems for determining
conservation laws, to include any ODE not just those that admit a variable
principle [6]. Specifically, he demonstrated how to compute integrating fac-
tors using a variety of computational techniques that are similar to those used
to compute variable that changes [5]. He made a clear comparison between
the unique ways that admitted local symmetries and acknowledged integrating
factors reduce order. He gave an example of how to solve boundary value prob-
lems using invariance under point symmetries. By examining their topological
characteristics, he demonstrated that invariant solutions comprise separatri-
ces and singular envelop solutions. He also developed an approach to create
exceptional solutions, or invariant solutions, that arise from accepted.

3 Research methodology

We mainly focus on methods for finding solutions that stay the same under
certain group changes, called Lie groups. The space that contains the system’s
independent and dependent variables is influenced by the Lie groups. Building
generators for infinitesimal transformations, prolongations, determining equa-
tions and integrating factors.

3.1 Invariant transformation

When all of the group’s transformations result in a point on curve C mapping
into another point on the curve, that curve is said to be invariant. This means
that the solutions to a certain differential equation stay the same when certain
transformations are applied, specifically under a smaller group of transforma-
tions that the system allows [1]. In order for the infinitesimal co-efficients
to simultaneously disappear, the curve must form an orbit [7]. The equa-
tion below can be used to parametrically express a family of curves with one
parameter.

ϕ(x, y) = C (1)

where the function ϕ(x, y) defines the family and C defines the parameter that
labels various curves of the family. We therefore say the family is invariant if
the incase of each curve of it is another curve of the family. Any specific value
of λ has to be true for the image points (x′, y′). The solutions to these ODE
systems are part of a smaller group within the larger group that the system
allows as shown in the equation below.

ϕ(x′.y′) = ϕ(X(x, y;λ), Y (x, y;λ)) = C ′, (2)
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where C ′ is a parameter different from C whose value depends on C and λ. If
Equation 22 is partially differentiated with w.r.t λ along λ = λ0, we find

ξ(x, y)ϕ1 + η(x, y)ϕ =

(
∂C ′

∂λ

)
λ=λ0

(3)

The RHS of Equation 3 is a function of C only, hence we can denote it by
F (C). Using Equation 2, Equation Equation 22 can be written as

ξ(x, y)ϕx + η(x, y)ϕy = f(ϕ). (4)

The representation of Equation 4 can equivalently be represented as

ψ(x, y) = G (5)

for which ψ is a function of ϕ, that is, for which

ψ = G(ϕ). (6)

Similarly, an equivalence to representation Equation 5 from equation Equation
4 gives

ξ(Qx + ηQy) = (ξϕx + ηϕy)
dG

dϕ
=
dG

dϕ
F (ϕ). (7)

We therefore choose the function G and we thus have

G(ϕ) =
∫ dϕ

fϕ
. (8)

The RHS of Equation 8 becomes 1, that is,

ξψx + ηψy = 1. (9)

3.2 Invariance of Differential Equation

Known as invariant solutions of differential equations (DEs), invariant curves
from the LGTs that these equations allow provide a helpful way to find their
solutions. If there isn’t a constant solution, we can make the difficulty of a
regular differential equation easier by using the constants. In general, for any
its invariance can be explained as follows:
Considering the ODE below,

Fn(x, y, y1, ..., yn) (10)

admitting Lie groups with infinitesimal generators G1, G2 and G3 :

(i). Determine x1(u, v), v1(u, v, v1) and hence v(1)1, invariants of G
2
1.
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(ii). Apply G2
2 to x1, y1, y(1)1 to determine α1(x1), α2(x1, y1), α3(x1, y1, y(1)1),

so that G2
2 = α1

∂
∂x1

+ α2
∂

∂y1
+ α3

∂
∂y(1)1

.

(iii). Find the invariants x2(x1, y1), y2(x1, y1, y(1)1) of G
2
2 and hence y(2)1G

3
2.

(iv). Apply G3
3 to x2, y2, y(2)1 to find β1(x2), β2(x2, y2), β3(x2, y2, y(2)1), so that

G3
3 = β1

∂
∂x2

+ β2
∂

∂y2
+ β3

∂
∂y(2)1

.

3.3 Integrating Factors

The provided function takes the systems and multiplies them with the ordi-
nary differential equation (ODE) to transform it into a precise form known
as a total derivative form. Integrating factors provide a methodical way to
reduce the complexity of an ODE by locating a primary integral [5]. Com-
pared to reducing using point symmetries, the simpler ODE includes both the
independent variables we get from it. Also, any starting integral can be found
using an integrating part. This factor is decided by a math formula that looks
at the variables and their rates of change up to a certain level. The factor is
then multiplied using an ODE to change it into a specific form called a total
derivative.

3.4 Adjoint symmetry

The ODE’s solutions from linearization that hold true are known as adjoint
symmetry (AS). For instance, for an AS to be an IF, there must be sufficient
and necessary additional determining equations. Consequently, the study of
the first integral of ODEs heavily relies on AS [10].
Given the following ODE

y(n) = f(x, y, y′......y(n−1)) (11)

represented by the surface

F (x, y, y1, ..., yn) = yn − f(x, y, y1, ..., yn−1) = 0. (12)

The linearization operator (LO) of Equation 11 is given by

Tg = Pm −
m−1∑
j=0

fyiP
j, (13)

where

P =
∂

∂x
+

∞∑
j=1

yi
∂

∂yj−1

.
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The adjoint LO is given through integration by parts as

T ∗
g = (−1)mPm −

m−1∑
j=0

j∑
i=0

(−1)j
j!

(j − i)!i!
(P j−ffyj)p

i. (14)

Now, the operator in Equation 14 can be equated to

MTgU − UT ∗
gM = PQ[M,U, g], (15)

where Q is the trilinear function defined by

Q[M,U ;V ] =
m−1∑
j−0

j∑
i=0

(−1)i(P j−iUMVyj+1
), (16)

for arbitrary functions

V (x, y, y1, ..., ym), U(x, y, y1, ..., ym),M(x, y, y1, ..., ym).

In particular, self adjointness is equivalent to the m+ 1 conditions

(−1)m = 1, (17)

that is to say m is even

fyj =
m−j−1∑
i=0

(−1)j+i (j + i)!

j!i!
P ifyj+i, j = 0, 1...m− 1 (18)

Let

Tg = Tg|g=0 = Pm −
m−1∑
j=0

fyjP
j (19)

and

T ∗
g = T ∗

g |g=0 = (−1)Pm −
m−1∑
j=0

j∑
i=0

(−1)j
j!

(j − i)!i!
(P j−ifyj)P

i (20)

where

P = P |g=0 =
∂

∂x
+

m−1∑
j=1

Y j
∂

yj−1

= f(x, y, y1, ..., ym−1)
∂

∂ym−1

.

Operators Equation 19 and Equation 20 are restricted to the surface by in-
finitesimal operators. As discussed in [2], we can observe that the solutions
η̂(x, y, y1.....yϱ) of

Tgη̂ = Pmη̂ −
m−1∑
j=0

fyjD
j η̂ = 0 (21)

correspond to the symmetries in characteristics form of order 0 ≤ ϱ ≤ n of
ODE in Equation 22.
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3.5 Infinitesimal transformations

Suppose we have a single parameter LGT ε defined by

U∗ = U(u; ε), (22)

with the identity ε = 0 and law of composition ϕ. Expanding (3.0.57) about
ε = 0, in the neighborhood of ε = 0, we get

u∗ = u+ ε

[
δU(u : ε)

δε
|ε=0

]
+

1

2ε2

[
δ2u(u; ε)

δε2
|ε = 0

]
+ ...

= u+ ε

[
δu(u : ε

δε
|ε=0

]
+ 0(ε2) (23)

Let

Z2(u) =

[
δU(U : ε)

δε
|ε=0

]
. (24)

The function u + εz2(u) is called the infinitesimal transformation (IT) of the
Equation 41 .
A one-parameter Lie Group Transformation (LGT) is defined by its small
changes, which can also be described by its small generator.
Theorem
The one parameter LGT is equivalent to

U∗ = ϱϵuU = U + ϵUu+
ϵ2

2
U2u+ ...

[1 + εU +
ε2U2

2
+ ...]U

=
∞∑
h=0

εh

h!
Uhu, (25)

where the operator (U = U(u)) is well defined by and the operator Uh =
UUh−1, H = 1, 2..., in particular, Uhf(u), H = 1, 2... with U0f(u) ≡ f(u).

3.6 Infinitesimal generators (IG)

These are properties of transformational Lie groups. Suppose that a one pa-
rameter ε LGTs is parameterized in such a way that ϕ(a, b) = a + b gives its
law of compositions, and ε−1 = −ε and ⌈(ε) ≡ 1. This means that the one
parameter LGT (3.10) becomes

du∗

dε
= ξ∗. (26)
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with
U∗ = Uatε = 0, (27)

in terms of its infinitesimals ξ. Therefore, he IG of the one-parameter LGT is
the operator

U = U(u) = (ξ) · ∇ =
m∑
j=l

εj(u)
δ

δuj
, (28)

where ∇ is the gradient operator

∇ = [
δ

δu1
,
δ

δu2
.......

δ

δun
]. (29)

For any differentiable function F (U) = f(U1, U2...Un), one has UF (u) =

ξ.∇F (U) = ∑n
j=1 ξj(u)

δF (u)
δuj

.

3.7 Lie point symmetries of ODE

A symmetry where the infinitesimals solely rely on coordinates is known as
a point symmetry. Our description pertains to a Lie point symmetry that is
contingent upon a minimum of one parameter, meaning that the parameter can
fluctuate continuously within a certain range.Lie point symmetries of ODEs
are of the form

D = α
∂

∂x
+ β

∂

∂y
, (30)

in which α and β, the coefficients, are functions only of x and y. To be able
to apply a point transformation to an nth order ODE

f(x, y, y′, y′′..., y(n)) = 0. (31)

As explained in [3], understanding how the derivatives change as a result of the
following infinitesimal transformations (IT) is necessary. So, x = x+ ϵα(x, y)

y = y + ϵβ(x, y) (32)

having a generator

D = α(x, y)
∂

∂x
+ β(x, y)

∂

∂y
. (33)

Therefore for the first derivative,

=
dy

dx
=
d(y + ϵβ)

d(x+ ϵβ)
=
d(y + ϵβ)

d(x+ ϵα)
(34)

=
dy
dx

+ ϵdβ
dx

(1 + ϵdα
dx

)
(35)



82 George Opiyo, Omolo Ongati, Aminer Titus, Benard Okelo

= (y′ + ϵβ′)(1− ϵα′ + ϵ2α2 − ...)

= y′ + ϵ(β′ − y′α′) (36)

which the term O(ϵ2) indicates where the termination is done. Note that the
total derivatives with respect to x is mentioned by the primes. We have the
second derivative for which

d2y

dx2
=

d

dx
(
dy

dx
)

=
d[(y′ + ϵ(β′ − y′α′))]

d(x+ ϵα′)

=
dy′

dx
+ ϵ d

dx
(β′ − y′α′)

(1 + ϵα′)

= y′′ + ϵ(β′′ − 2y′′α′ − y′α′′) (37)

For the third and the fourth derivatives, we have

d3y

dx3
= y′′′ + ϵ(β′′′ − 3y′′′α′ − 3y′′α′′ − y′α′′′) (38)

d4y

dx4
= yiv + ϵ(βiv − 4yivα′ − 6y′′′α′′ − 4y′′α′′′ − y′αiv) (39)

and so on. Thus in general

dny

dxn
= y(n) + ϵ(β(n) −

n∑
i=l

Cn
i y

(i+l)α(n−i)) (40)

4 Main results

We analyzed a fourth order non-linear ordinary differential equation using
symmetry method. Let us consider the following equation

F (x, y, y′, y′′, y′′′, y(4)) = 0 (41)

which arises due to collapse of shafts in power transmission systems. In par-
ticular, we have in this study attempted to solve a particular form of Equation
41 given as

y(4) − 4

3
(y′′)−1(y′′′)2 = 0 (42)

using Lie symmetry analysis approach. This case arises in the study of equa-
tions due to collapse of shafts in power transmission system. we can observe
that Equation 42 can alternatively be written in the form

y(4) = f(x, y, y′, y′′, y′′′) = 0 (43)
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and thus we obtain

y(4) =
4

3
(y′′)−1(y′′′)2 = 0 (44)

We first consider prolongations in the next steps. Since our equation is of 4th

order, we apply the fourth prolongation whose nth extension is of the form

G[n] = G+
n∑
i=l

{β(i) −
n∑
i=l

{(ij)y(i+1−j)α(i)} ∂

∂y(i)
(45)

We can now use Equation 45 the nth extension ofG to find the fourth extension.
That is G(4), thus

G[4] = G[3] + (β(4) − 4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4))
∂

∂y(4)

= G[2] + (β′′′ − 3y′′′α′ − 3y′′α′′ − y′α′′′)
∂

∂y′′′

+(β(4) − 4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4))
∂

∂y(4)

= G[1] + (β′′ − 2y′′α′ − y′α′′)
∂

∂y′′
) + (β′′′ − 3y′′′α′ − 3y′′α′′

−y′α′′′)
∂

∂y′′′
+ (β(4) − 4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4))

∂

∂y(4)

G[4] = α
∂

∂x
+ β

∂

∂y
+ (β′ − α′y′)

∂

∂y′
+ (β′′ − 2y′′α′ − y′α′′)

∂

∂y′′
)

+(β′′′−3y′′′α′−3y′′α′′−y′α′′′)
∂

∂y′′′
+(β(4)−4y(4)α′−6y′′′α′′−4y′′α′′′−y′α(4))

∂

∂y(4)

(46)
Applying the fourth prolongation of the generatorG(4) on the differential Equa-
tion 44, that is,

G[4][y(4) − 4

3
(y′′)−1(y′′′)2] = 0,

leads to

⇒ [α
∂

∂x
+ β

∂

∂y
+ (β′ − α′y′)

∂

∂y′
+ (β′′ − 2y′′α′ − y′α′′)

∂

∂y′′

+(β′′′ − 3y′′′α′ − 3y′′α′′ − y′α′′′)
∂

∂y′′′
+ (β(4) − 4y(4)α′

−6y′′′α′′ − 4y′′α′′′ − y′α(4))[
∂

∂y4
]y(4) − 4

3
(y′′)−1(y′′′)2] = 0 (47)
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On expansion Equation 47 we obtain

⇒ α
∂

∂x
[y(4) − 4

3
(y′′)−1(y′′′)2] + β

∂

∂y
[(y(4) − 4

3
(y′′)−1(y′′′)2]

+(β′ − α′y′)
∂

∂y′
[y(4) − 4

3
(y′′)−1(y′′′)2]+

(β′′ − 2y′′α′ − y′α′′)
∂

∂y′′
[y(4) − 4

3
(y′′)−1(y′′′)2]

+(β′′′ − 3y′′′α′ − 3y′′α′′ − y′α′′′)
∂

∂y′′′
[y(4) − 4

3
(y′′)−1(y′′′)2] + (β4

−4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4))
∂

∂y(4)
[y(4) − 4

3
(y′′)−1(y′′′)2] = 0 (48)

On differentiating partially Equation 47) we obtain

α[y(5) +
4

3
(y′′)−2(y′′′)3 − 8

3
(y′′′)(y′′)−1y(4)] + β[0]

+(β′ − α′y′)[0] + (β′′ − 2y′′α′ − y′α′′′)[
4

3
(y′′)−2(y′′′)2 − 0]

+[β(4) − 4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4)](1) = 0 (49)

But
y(5) = (y(4))′

y(5) = [
4

3
(y′′)−1(y′′′)2]′

y(5) =
4

3
[−1(y′′)−2(y′′′)(y′′′)2 + 2(y′′)−1(y′′′)1y(4)]

Therefore

y(5) = −4

3
(y′′)−2(y′′′)3 +

8

3
(y′′)−1(y′′′)y(4) (50)

Substituting Equation 48 into Equation 49 we obtain the following equations

α[−4

3
(y′′)−2(y′′′)3 +

8

3
(y′′)−1(y′′′)y(4) +

4

3
(y′′)−2(y′′′)3 − 8

3
(y′′′)(y′′)−1y(4)]

+β[0] + (β′ − α′y′)[0] + (β′′ − 2y′′α′ − y′α′′′)[
4

3
(y′′)−2(y′′′)2 − 0]

+[β(4) − 4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4)](1) = 0 (51)

On simplifying Equation 51 we obtain

4

3
(y′′)−2(y′′′)2β′′ − 8

3
(y′′)−2(y′′′)2(y′′)α′ − 4

3
(y′)(y′′)−2(y′′′)2α′′′
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+β(4) − 4y(4)α′ − 6y′′′α′′ − 4y′′α′′′ − y′α(4) = 0 (52)

The first, second, third, and fourth total derivatives of α and β can therefore
be stated in terms of partial derivatives as follows. The primes in Equation 52
correspond to the total derivatives.

α′ =
∂α

∂x
+ y

∂α

∂y
from d(α) = (

∂α

∂x
)dx+ (

∂α

∂y
)dy (53)

α′′ =
d

dx
(
∂α

∂x
+ y′

∂x

∂y
) +

d

dy
(
∂α

∂x
+ y′

∂α

∂y
)y′

=
∂2α

∂x2
+ y′

∂2α

∂y∂x
+ y′′

∂x

∂y
+ y′

∂2α

∂x∂y
+ y′2

∂2α

∂y2
+ 0

=
∂2α

∂x2
+ 2y′

∂2α

∂x∂y
+ y′2

∂2α

∂y2
+ y′′

∂α

∂y
(54)

α′′′ =
∂

∂x
(
∂2α

∂x2
+ 2y′

∂2α

∂x∂y
+ y′′

∂x

∂y
+ y′2

∂2α

∂y2
)

+y′
∂

∂y
(
∂2α

∂x2
+ 2y′

∂2α

∂x∂y
+ y′′

∂x

∂y
+ y′2

∂2α

∂y2
)

=
∂3α

∂x3
+

2y′∂3α

2x∂x∂y
+

2y′′∂2α

∂x∂y
+ y′′

∂2α

∂y∂x
+ y′′′

∂x

∂y
+
y′2∂3α

∂x∂y2
+ 2y′

y′′∂2α

∂y2

+
y′∂3α

∂y∂x2
+

2y′∂3α

∂y∂x∂y
+ 0 + y′y′′

∂2α

∂y2
+ 0 + y′3

∂3α

∂y3
+ 0 =

∂3α

∂x3

+
3y′∂3α

∂x2∂y
+

3y′′∂2α

∂x∂y
+ y′′′

∂α

∂y
+ 3y′2

∂3α

∂x∂y2
+ 3y′y′′

∂2α

∂y2
+ y′3

∂3β

∂y3
(55)

and

α4 =
∂

∂x
(
∂3α

∂x3
+

3y′∂3α

∂x2∂y
+3y′′

∂2α

∂x∂y
+ y′′′

∂x

∂y
+3y′2

∂3α

∂x∂y2
+3y′y′′

∂2α

∂y2
+ y′3

∂3α

∂y3
)

+y′
∂

∂y
(
∂3α

∂x3
+

3y′∂3α

∂x2∂y
+

3y′′∂2α

∂x∂y
+ y′′′

∂x

∂y
+ 3y′2

∂3α

∂x∂y2
+ 3y′y′′

∂2α

∂y2
+ y′3

∂3α

∂y3
)

=
∂4α

∂x4
+ 3y′

∂4α

∂x3∂y
+ 3y′′

∂3α

∂x2∂y
+ 3y′′

∂3α

∂x2∂y
+ 3y′′′

∂2α

∂x∂y
+ y′′′

∂2x

∂x∂y
+ y(4)

∂x

∂y

+3y′2
∂4α

∂x2∂y2
+ 6y′y′′

∂3α

∂x∂y2
+ 3y′y′′

∂3α

∂x∂y2
+ 3y′y′′′

∂2α

∂y2
+ 3y′′2

∂2α

∂y2
+ y′3

∂4α

∂x∂y3

+3y′2y′′
∂3α

∂y3
+ y′

∂4α

∂y∂x3
+ 3y′2

∂4α

∂x2∂y2
+ 3y′y′′

∂3α

∂x∂y2
+ y′y′′′

∂2α

∂y2
+ 3y′3

∂4α

∂x∂y3
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+3y′2y′′
∂3α

∂y3
+ y′4

∂4α

∂y4

=
∂4α

∂x4
+

4y′∂4α

∂x3∂y
+ 6y′′

∂3α

∂x2∂y
+ 4y′′′

∂2α

∂x∂y
+ y4

∂α

∂y
+

3y′3∂4α

∂x2∂y2
+ 9y′y′′

∂3α

∂x∂y2

+4y′y′′′
∂2α

∂y2
+3y′′2

∂2α

∂y2
+4y′

∂4α

∂x∂y3
+6y′2y′′

∂3α

∂y3
+3y′2

∂4α

8x2∂y2
+3y′y′′

∂3α

∂x∂y2
+y′4

∂4α

∂y4

(56)
and

β′ =
∂β

∂x
+ y′

∂β

∂y
{from d(β) = (

∂β

∂x
)dx+ (

∂β

∂y
)dy}

β′′ =
d

dx
(
∂β

∂x
+ y′

∂β

∂y
) +

d

dy
(
∂β

∂x
+ y′(

∂β

∂y
)y′

=
∂2β

∂x2
+ y′

∂2β

∂y∂x
) + y′′

∂β

∂y
+ y′

∂2β

∂x∂y
+ y′2

∂2β

∂y2
+ 0

=
∂2β

∂x2
+ 2y′

∂2β

∂x∂y
) + y′2

∂2β

∂y2
+ y′′

∂β

∂y
(57)

β′′′ =
∂

∂x
(
∂2β

∂x2
+2y′

∂2β

∂x∂y
+y′′

∂β

∂y
+y′

∂2β

∂y2
)+y′

∂

∂y
(
∂2β

∂x2
+2y′

∂2β

∂x∂y
+y′′

2β

∂y
+y′2

∂2β

∂y2
)

=
∂3β

∂x3
+ 2y′

∂3β

∂x∂x∂y
+

2y′′∂2β

∂x∂y
+
y′′∂2β

∂x∂y
+
y′′′∂β

∂y
4 + y′2

∂3β

∂x∂y2
+ 2y′y′′

∂2β

∂y2

+y′
∂3β

∂y∂x2
+ 2y′2

∂3β

∂y∂x∂y
+ 0 + y′y′′

∂2β

∂y2
+ 0 + y′3

∂3β

∂y3
+ 0

=
∂3β

∂x3
+3y′

∂3β

∂x2∂y
+3y′′

∂2β

∂x∂y
+y′′′

∂β

∂y
+3y−2 ∂2β

∂x∂y2
+3y′y′′2

∂2β

∂y2
+y′3

∂3β

∂y3
(58)

β4 =
∂

∂x
(
∂3β

∂x3
+ 3y′

∂3β

∂x2∂y
+ 3y′′

∂2β

∂x∂y
+ y′′′

∂β

∂y
+ 3y′2

∂3β

∂x∂y2
+ 3y′y′′2

∂2β

∂y

+3y′2
∂3β

∂x∂y2
)+3y′y′′

∂3β

∂y2
+y′3

∂3β

∂y3
)+y′

∂

∂y
(
∂3β

∂x3
+3y′

∂3β

∂x2∂y
+3y′′

∂2β

∂x∂y
+y′′′

∂β

∂y

+3y′2
∂3β

∂x∂y2
+ 3y′y′′

∂2β

∂y2
+ y′3

∂3β

∂y3
)

=
∂4β

∂x4
+ 3y′

∂4β

∂x3∂y
+ 3y′′

∂3β

∂x∂y
+ 3y′′

∂3β

∂x2∂y
+ 3y′′′

∂2β

∂x∂y
+ y′′′

∂2β

∂x∂y
+ y(4)

∂β

∂y

+
3y′2∂4β

∂x2∂y2
+
∂x2∂y∂3β

∂x∂y2
+ 3y′y′′

∂3β

∂x∂y2
+ 3y′y′′′

∂2β

∂y2

+3y′′2
∂2β

∂y2
+ y′3

∂4β

∂x∂y3
+ 3y′2y′′

∂3β

∂y3
+ y′

∂4β

∂y∂x3
+ 3y′2

∂4β

∂x2∂y2
+ 3y′y′′

∂3β

∂x∂y2



Lie Symmetry Analysis of Wave Equation 87

+y′y′′′
∂2β

∂y2
+ 3y′3

∂4β

∂x∂y3
+ 3y′2y′′

∂3β

∂y3
+ y′4

∂4β

∂y4

=
∂4β

∂x4
+

4y′
∂4β

∂x3∂y
+6y′′

∂3β

∂x2∂y
+4y′′′

∂2β

∂x∂y
+y(4)

∂β

∂y
+3y′2

∂4β

∂x2∂y2
+9y′y′′

∂3β

∂x∂y2
+4y′y′′′

∂3β

∂y2

+3y′′2
∂2β

∂y2
+4y′3

∂4β

∂x∂y3
+6y′2y′′

∂3β

∂y3
+3y′2

∂4β

∂x2∂y2
+3y′y′′

∂3β

∂x∂y2
+y′4

∂4β

∂y4
(59)

Substituting the above results in Equation 54 we obtain the following

4

3
(y′′)−2(y′′′)2(

∂2β

∂x2
+2y′

∂2β

∂x∂y
+ y′2

∂2β

∂y2
+ y′′

∂β

∂y
)− 8

3
(y′′)−1(y′′′)2+ [

∂α

∂x
+ y′

∂α

∂y
]

−4

3
y′(y′′)−2(y′′′)2[

∂2α

∂x2
+ 2y′

∂2α

∂x∂y
+ y′2

∂2α

∂y2
+ y′′

∂α

∂y
] +

∂4β

∂x4
+ 4y′

∂4β

∂x3∂y

+6y′′
∂3β

∂x2∂y
+
4y′′′∂2β

∂x∂y
+y(4)

∂β

∂y
+3y′2

∂4β

∂2∂y2
+9y′y′′

∂3β

∂x∂y2
+6y′′

∂3β

∂x∂y
+4y′y′′′

∂2β

∂y2

+3y′′2
∂2β

∂y2
+ 4y′3

∂4β

∂x∂y3
+ 6y′2y′′

∂3β

∂y3
+ 3y′2

∂4β

∂x2∂y2
+ 3y′y′′

∂3β

∂x∂y2
+ y′4

∂4β

∂y4

−4y(4)(
∂α

∂x
+ y′

∂α

∂y
)− 6y′′(

∂3α

∂x3
+ 3y′

∂3α

∂x2∂y
) + 3y′′

∂2α

∂x∂y2
+ y′′′

∂α

∂y
+ 3y′2

∂3α

∂x∂y2

+3y′y′′
∂3α

∂y2
+ y′3

∂3α

∂y3
− 4y′′(

∂3α

∂x3
+3y′

∂3α

∂x2∂y
) + 3y′′

∂2α

∂x∂y
+ y′′′

∂α

∂y
+3y′2

∂3α

∂x∂y2

+3y′y′′
∂2α

∂y2
+ y′3

∂3α

∂y3
− y′(

∂4α

∂x4
+ 4y′

∂4α

∂x3∂y
) + 6y′′

∂3α

∂x2∂y
+ 4y′′′

∂2α

∂x∂y
+ y4

∂x

∂y

+3y′2
∂4α

∂x2∂y2
+ 9y′y′′

∂3α

∂x∂y2
+ 4y′y′′(

∂2α

∂y2
+ 3y′′2

∂2α

∂y2
) + 4y′3

∂4α

∂x∂y3

+6y′2y′′
∂3α

∂y3
+ 3y′2

∂4α

∂x2∂y2
+ 3y′y′′

∂3α

∂x∂y2
+ y′4

∂4α

∂y4
) (60)

On expansion of Equation 60 and simplifying it, we obtain

4

3
(y′′)−2(y′′′)2

∂2β

∂x2
+

4

3
(y′′)−2(y′′′)22y′

∂2β

∂x∂y

+
4

3
(y′′)−2(y′′′)2(y′2)

∂2β

∂y2
+

4

3
(y′′)−2(y′′′)2(y′′)

∂β

∂y

−8

3
(y′′)−1(y′′′)2

∂α

∂x
− 8

3
(y′′)−1(y′′′)2y′

∂α

∂y
− 4

3
(y)′(y′′)−2(y′′′)2
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∂2α

∂x2
− 4

3
(y′)(y′′)−2(y′′′)22y′

∂2α

∂x∂y
− 4

3
(y′)(y′′)−2(y′′′)2y′2

∂2α

∂y2

−4

3
(y′)(y′′)−2(y′′′)2(y′′)

∂α

∂y
+
∂4β

∂x4
+

4y′∂4∂

∂x3∂y
+ 6y′′

∂3β

∂x2∂y

+4y′′′
∂2β

∂x∂y
+ y(4)

∂β

∂y
+ 3y′2

∂4β

∂x2∂y2
+ 9y′y′′

∂3β

∂x∂y2
+ 4y′y′′′

∂2β

∂y2

+3y′′2
∂2β

∂y2
+ 4y′3

∂4β

∂x∂y3
+ 6y′2y′′

∂3β

∂y3
+ 3y′2

∂4β

∂x2∂y2
+ 3y′y′′

∂3β

∂x∂y2

+y′(4)
∂4β

∂y4
− 4y4

∂α

∂x
− 4y(4)y′

∂α

∂y
− 6y′′

∂3β

∂x3
− 18y′′y′2

∂3α

∂x2∂y

−18(y′′)2
∂2α

∂x∂y
− 6(y′′)(y′′′)

∂α

∂y
− 18y′′y′2

∂3α

∂x∂y2
− 18(y′′)2y′

∂2α

∂y2

−6y′′(y′)3
∂3α

∂y3
− 4(y′′)

∂3α

∂x3
− 12(y′′)y′

∂3α

∂x3∂y
− 12(y′′)2

∂2α

∂x∂y

−4(y′′)(y′′′)
∂α

∂y
− 12y′2y′′

∂3α

∂x∂y2
− 12y′(y′′)2

∂x2α

∂y2
− 4y′3y′′

∂3α

∂y3
− y′

∂4α

∂x4

−4y′2
∂4α

∂x3∂y
− 6y′y′′

∂3α

∂x3∂y
− 4y′y′′′

∂2α

∂x∂y
− y′y(4)

∂α

∂y
− 3y′3

∂4α

∂x2∂y2

−9y′2y′′
∂3α

∂x∂y2
− 4y′2y′′

∂2α

∂y2
− 3y′y′′2

∂2α

∂y2
− 4y′4

∂4α

∂x∂y3

−6y′3y′′
∂3α

∂y3
− 3y′3

∂4α

∂x2∂y2
− 3y′2y′′

∂3α

∂x∂y2
− y′5

∂4α

∂y4
= 0 (61)

In x, y, y′′, and y′′′, Equation 61 is an identity, meaning that it holds true for
any arbitrary chance of x, y, y′, y′′, and y′′′. Being functions of only x and y, α
and β must equal zero for the co-efficient of the powers of y′, y′′, y′′′, and their
combinations. The following partial differential equation systems, sometimes
referred to as determining equations, are obtained.

(y′)3(y′′)−2(y′′′)3 :
4

3

∂2α

∂y2
= 0 (62)

(y′)2(y′′)−2(y′′′)3 :
4

3

∂2β

∂y2
− 8

3

∂2α

∂x∂y
= 0 (63)

(y′)1(y′′)−2(y′′′)3 : −4

3

∂2α

∂x2
+

8

3

∂2β

∂x∂y
= 0 (64)

(y′)0(y′′)−2(y′′′)3 :
∂2β

∂x2
(65)
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Solving determining equations.
Intergrating Equation 62 we find

4

3

∂2α

∂y2
= 0 =⇒ ∂2α

∂y2
= 0

∂α

∂y
= C1 =⇒ α = C1y + C2..., (66)

where C1 and C2 are arbitrary functions of x. We substitute Equation 66 in
Equation 63 and solve to find

4

3

∂2β

∂y2
− 8

3

∂2α

∂x∂y
= 0 =⇒ ∂2β

∂y2
− 2

∂2α

∂x∂y
= 0

∂2β

∂y2
− 2

∂

∂x
C1 =⇒

∂2β

∂y2
= 2C1

1 =⇒ ∂β

∂y
= 2C1

1y + C3

=⇒ β = C1
1y

2 + C3y + C4 (67)

Where C3 and C4 are arbitrary functions of x, substituting Equation 66 and
Equation 67 into Equation 64 gives

−∂
2α

∂x2
+

2∂2β

∂x∂y
= 0

2∂2β

∂x∂y
− ∂2α

∂x2
= 0

2∂

∂x

∂β

∂y
− ∂2α

∂x2
= 0

2
∂

∂x
(2C ′

1y + C3)− (C ′′
1 y + C ′′

2 ) = 0

2(2C ′′
1 y + C ′

3)− (C ′′
1 y + C ′′

2 ) = 0

4C ′′
1 y + 2C ′

3 − C ′′
1 y − C2) = 0

3C ′′
1 y + 2C ′

3 − C ′′
2 = 0 (68)

Since C1, C2 and C3 depends on X only, we can now equate the coefficients of
powers of y to zero. This yields

y1 : 3C ′′
1 = 0. (69)

y0 : 2C ′
3 − C ′′

2 = 0. (70)
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Now, we substitute Equation 68 into Equation 69 and this yields

∂2β

∂x2
= 0

Therefore,
C ′′′

1 y
2 + C ′′

3 y + C ′′
4 = 0 (71)

we equate the coefficient of y to zero and obtain

y2 : C ′′′
1 = 0 (72)

y′ : C ′′
3 = 0 (73)

y0 : C ′′
4 = 0 (74)

We now solve the differential equations as follows:
From Equation 72 we have

C ′′′
1 = 0 ⇒ C ′′

1 = H1 ⇒ C ′
1 = H1x = H2 ⇒ C1 =

1

2
H1x

2 +H2x+H3, (75)

where H1, H2 and H3 are arbitrary constant. Now from Equation 73

C ′′
3 = 0 ⇒ C ′

3 = H4 ⇒ C3 = H4x+H5 (76)

then considering Equation 72, we have

C ′′
4 = 0 ⇒ C ′

4 = H6 ⇒ C4 = H6x+H7 (77)

Where H1, H2, H3, H4, H5, H6 and H7 are arbitrary constants. Thus we have

α = C1y + C2

β = C ′
1y

2 + C3y + C4

α(x, y) = (
1

2
H1x

2 +H2x+H3)y + 0

Where C2 = 0

α(x, y) =
1

2
H1x

2y +H2xy +H3)y (78)

We also apply to produce

β(x, y) = (H1x+H2)y
2 + (H4x+H5)y + (H6x+H7)

Therefore

β(x, y) = H1xy
2 +H2y

2 +H4xy +H5x+H6x+H7. (79)
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Now we consider infinitesimals for the equation. As a result, the generator G
of infinitesimal transformation is

G = (
1

2
H1x

2y+H2xy+(H3y)
∂

∂x
+(H1xy

2+H2y
2+H4xy+H5y+H6x+H7)

∂

∂y

which is written as

G = H1(
1

2
x2y

∂

∂x
+xy2

∂

∂y
)+H2(xy

∂

∂x
+y2

∂

∂y
)+H3(y

∂

∂
)+H4(xy

∂

∂y
H5(y

∂

∂y
)+H6(x

∂

∂y
)

+H7
∂

∂y
, (80)

which is a seven parameter symmetry of the equation of concern.

5 Open Problems

We have analyzed the problematic phenomena of an apparently unintentional
beating and the potential collapse of shafts in power transmission systems was
discovered by motor ship constructors. We examined a fourth order ODE
using Lie symmetry which demonstrates how the collapse of shafts in power
transmission networks occurs dynamically. This study exposes certain two
open problems.
Problem 1: Can one develop an efficient algorithm to solve this forth order
ODE numerically?
Problem 2: Using Lie symmetry analysis, determine the solution of higher
order non-linear ODES.
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