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Abstract

In this article, we establish new integral formulas inspired
by an old integral result listed in two key books. Some of these
formulas depend on the Euler-Mascheroni constant and extend
existing results, broadening their scope and applicability. The
Laplace transforms of certain original functions are empha-
sized. The proofs are presented in full detail, using rigorous
analytical techniques. These include various geometric and
power series expansions, and asymptotic analysis. An open
problem is given at the end.
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1 Introduction

Over the past 150 years, numerous integral formulas have been established.
Many of these are documented in the essential book of tables [5], which it-
self extracts formulas from older books of tables, such as [4]. These formulas
are fundamental in various branches of mathematics, including analysis, dif-
ferential equations, optimization, signal processing, probability and statistics.
Additionally, they play a key role in multiple fields of physics, such as classical
mechanics, electromagnetism, quantum mechanics, statistical mechanics and
general relativity. The study of integrals continues to be an active area of
research, as demonstrated by recent advancements in [6, 7, 8, 9, 10, 11, 2, 1].
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The integral formulas in [5] and [4] are given clearly but roughly, with-
out proof. They may therefore appear somewhat obscure or unintuitive to
the reader. In some cases, their derivations rely on techniques that are not
immediately obvious and require a deeper study of mathematical methods.
Revisiting these formulas with modern analytical tools can provide greater
clarity and ideas about their possible extensions. With this in mind, we focus
on an interesting formula in [5, entry 3.4311, page 361], which in turn refers
to [4, entry 144(6)]. It is presented formally below.

Proposition 1.1 ([4, entry 144(6)] and [5, entry 3.4311, page 361]). For any
p > 0, we have∫ +∞

0

[
x−1 − 1

2
x−2(x+ 2)(1− e−x)

]
e−pxdx =

(
p+

1

2

)
log

(
1 +

1

p

)
− 1.

There are three main reasons why this formula has attracted our attention:

1. It involves power, exponential and logarithmic functions within an orig-
inal integral relation.

2. It offers flexibility through the parameter p, which can be chosen as any
positive value.

3. It has a natural connection with the Laplace transform.

However, to the best of our knowledge, there is no explicit proof of Propo-
sition 1.1 in the literature. In the process of filling this gap, we have discovered
several new integral formulas. They are all related in different ways and can de-
pend on an adjustable parameter. Some of them involve the Euler-Mascheroni
constant and serve as generalizations of existing results. The study is com-
pleted by a new result on an exponential inequality, which can be seen as of
independent interest, and an open problem. The proofs are given in full detail,
using classical mathematical techniques, such as geometric and power series
expansions, and asymptotic analysis. By revisiting and refining the ”old” for-
mula in Proposition 1.1, we thus contribute to the development of new integral
formulas.

The remainder of this article is structured as follows: Section 2 presents
two fundamental lemmas. Section 3 contains the main results. The mentioned
exponential inequality is introduced in Section 4. Section 5 formulates the
open problem. Finally, concluding remarks are provided in Section 6.

2 Two fundamental lemmas

The lemma below concerns the study of a particular function that will play a
central role in most of our results.
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Lemma 2.1 For any x ∈ R, let us set

f(x) = x− 1

2
(x+ 2)(1− e−x). (1)

1. Then f is non-decreasing, with f(x) ≥ 0 for any x ≥ 0, and f(x) ≤ 0
for any x ≤ 0.

2. The following equivalence of f(x) at x = 0 holds:

f(x) ∼ x3

12
.

3. The following equivalence of f(x) at x→ +∞ holds:

f(x) ∼ x

2
.

Proof.

1. Using standard differentiation rules, a factorization and the basic expo-
nential inequality ex ≥ 1 + x for any x ∈ R, we have

f ′(x) =
1

2
e−x(ex − 1− x) ≥ 0.

Therefore, f(x) is non-decreasing for any x ∈ R. Since

f(0) = 0− 1

2
(0 + 2)(1− e−0) = 0,

we have f(x) ≥ f(0) = 0 for any x ≥ 0, and f(x) ≤ f(0) = 0 for any
x ≤ 0,

2. At x = 0, the series expansion of the exponential function and a simple
product development give

(x+ 2)(1− e−x) ∼ (x+ 2)

(
x− x2

2
+
x3

6
− x4

24

)
= 2x− x3

6
+
x4

12
− x5

24

∼ 2x− x3

6
.

We therefore have

f(x) = x− 1

2
(x+ 2)(1− e−x) ∼ x− 1

2

(
2x− x3

6

)
=
x3

12
.

3. At x→ +∞, we have

f(x) = x− 1

2
(x+ 2)(1− e−x) ∼ x− 1

2
(x+ 2)(1− 0) =

x

2
− 1 ∼ x

2
.
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This ends the proof. �

This result will be needed mainly to justify the existence of the future in-
tegrals under consideration (more details are given at the beginning of Section
3) and the use of the Fubini-Tonelli integral theorem.

The lemma below concerns a basic integral formula obtained using standard
mathematical techniques.

Lemma 2.2 For any p > 0, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−pxdx =

1

2p2
− 1

p
+

1

2(1 + p)2
+

1

1 + p
.

Proof. Using a development of the integrand, the linearity of the integral,
the changes of variables y = px and z = (1 + p)x,

∫ +∞
0

xe−xdx = 1 and∫ +∞
0

e−xdx = 1, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−pxdx

=

∫ +∞

0

xe−pxdx− 1

2

∫ +∞

0

xe−pxdx−
∫ +∞

0

e−pxdx+
1

2

∫ +∞

0

xe−(1+p)xdx

+

∫ +∞

0

e−(1+p)xdx

=
1

2

∫ +∞

0

xe−pxdx−
∫ +∞

0

e−pxdx+
1

2

∫ +∞

0

xe−(1+p)xdx+

∫ +∞

0

e−(1+p)xdx

=
1

2p2

∫ +∞

0

ye−ydy − 1

p

∫ +∞

0

e−ydy +
1

2(1 + p)2

∫ +∞

0

ze−zdz

+
1

1 + p

∫ +∞

0

e−zdz

=
1

2p2
− 1

p
+

1

2(1 + p)2
+

1

1 + p
.

This concludes the proof. �

Further developments, including the proof of Proposition 1.1 and new
propositions, will be based more or less directly on this integral result.

3 New results

This section introduces the new integral formulas. Most of them depend on the
function f defined by Equation (1). Thanks to the second and third results in
Lemma 2.1, we are able to show that these integrals exist (or converge), which
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obviously makes sense since analytical expressions are given for them. For the
sake of redundancy, we will omit this aspect of existence in the proofs, but
provide the details that lead to the desired formulas.

The result below presents a new one-parameter integral formula in the same
spirit as Proposition 1.1. Lemma 2.2 is central to the proof.

Proposition 3.1 For any q > 0, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−qxdx =

1

2q
+

1

2(1 + q)
− log

(
1 +

1

q

)
.

Proof. Using the exponential primitive, the Fubini-Tonelli integral theorem,
which is validated because the integrand is non-negative by the first result of
Lemma 2.1, Lemma 2.2, and usual primitives and limits, we get∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−qxdx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

] [∫ +∞

q

e−pxdp

]
dx

=

∫ +∞

q

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−pxdx

}
dp

=

∫ +∞

q

[
1

2p2
− 1

p
+

1

2(1 + p)2
+

1

1 + p

]
dp

=

[
− 1

2p
− log(p)− 1

2(1 + p)
+ log(1 + p)

]p→+∞

p=q

=

[
− 1

2p
− 1

2(1 + p)
+ log

(
1 +

1

p

)]p→+∞

p=q

=
1

2q
+

1

2(1 + q)
− log

(
1 +

1

q

)
.

This ends the proof. �

Some special cases are given below.

� If we take q = 1, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−xdx =

1

2
+

1

4
− log(2) ≈ 0.05685.

� If we set, for any q > 0 and x > 0,

g(x) =

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−qx,
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then the Laplace transform of g at λ > 0 is given by

L(g)(λ) =

∫ +∞

0

g(x)e−λxdx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−(q+λ)xdx

=
1

2(q + λ)
+

1

2(1 + q + λ)
− log

(
1 +

1

q + λ

)
.

To the best of our knowledge, this is a new Laplace transform formula
in the literature.

The result below is a new one-integer-parameter integral result derived from
Proposition 3.1. It has the feature to involve the Euler-Mascheroni constant.

Proposition 3.2 For any m ∈ N\{0}, we have

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−mx

x(1− e−x)
dx = γ −

m−1∑
q=1

1

q
+ log(m)− 1

2m
,

with the convention
∑0

q=1 = 0, where γ is the Euler-Mascheroni constant, i.e.,
γ ≈ 0.57721.

Proof. Using the geometric series expansion, the Fubini-Tonelli integral theo-
rem, which is validated because the integrand is non-negative by the first result
of Lemma 2.1, Proposition 3.1, a famous series expansion of γ and telescopic
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developments, we get∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−mx

x(1− e−x)
dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x

(
+∞∑
q=m

e−qx

)
dx

=
+∞∑
q=m

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−qxdx

}

=
+∞∑
q=m

[
1

2q
+

1

2(1 + q)
− log

(
1 +

1

q

)]

=
+∞∑
q=m

[
1

q
− log

(
1 +

1

q

)]
− 1

2

+∞∑
q=m

(
1

q
− 1

1 + q

)

=
+∞∑
q=1

[
1

q
− log

(
1 +

1

q

)]
−

m−1∑
q=1

[
1

q
− log

(
1 +

1

q

)]
− 1

2

+∞∑
q=m

(
1

q
− 1

1 + q

)

=
+∞∑
q=1

[
1

q
− log

(
1 +

1

q

)]
−

m−1∑
q=1

1

q
+

m−1∑
q=1

[log(q + 1)− log(q)]

− 1

2

+∞∑
q=m

(
1

q
− 1

1 + q

)

= γ −
m−1∑
q=1

1

q
+ log(m)− 1

2m
.

This concludes the proof. �

Some special cases are given below.

� If we take m = 1, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−x

x(1− e−x)
dx = γ − 1

2
≈ 0.07721.

� If we take m = 2, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−2x

x(1− e−x)
dx = γ − 1 + log(2)− 1

4

≈ 0.02036.

The result below is a new integral result derived from Proposition 3.2. It
generalizes a classical integral formula from the literature.
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Proposition 3.3 For any m ∈ N\{0}, we have∫ +∞

0

[
e−x

m(1− e−x/m)
− 1

x
e−x
]
dx = γ −

m−1∑
q=1

1

q
+ log(m),

with the convention
∑0

q=1 = 0, where γ is the Euler-Mascheroni constant, i.e.,
γ ≈ 0.57721.

Proof. Using a development of the integrand, the linearity of the integral, the
change of variables y = mx and

∫ +∞
0

e−xdx = 1, we obtain∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−mx

x(1− e−x)
dx

=

∫ +∞

0

[
e−mx

1− e−x
− 1

2
(x+ 2)

e−mx

x

]
dx

=

∫ +∞

0

(
e−mx

1− e−x
− 1

x
e−mx

)
dx− 1

2

∫ +∞

0

e−mxdx

=

∫ +∞

0

(
e−y

1− e−y/m
− m

y
e−y
)

1

m
dy − 1

2

∫ +∞

0

e−y
1

m
dy

=

∫ +∞

0

[
e−y

m(1− e−y/m)
− 1

y
e−y
]
dy − 1

2m
.

By this and Proposition 3.2, we get∫ +∞

0

[
e−x

m(1− e−x/m)
− 1

x
e−x
]
dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−mx

x(1− e−x)
dx+

1

2m

= γ −
m−1∑
q=1

1

q
+ log(m)− 1

2m
+

1

2m

= γ −
m−1∑
q=1

1

q
+ log(m).

This ends the proof. �

Some special cases are given below.

� If we take m = 1, then we have∫ +∞

0

(
e−x

1− e−x
− 1

x
e−x
)
dx = γ ≈ 0.57721.

This is a well-known integral formula for γ. See, for example, [5, Entry
3.4272].
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� If we take m = 2, then we have∫ +∞

0

[
e−x

2(1− e−x/2)
− 1

x
e−x
]
dx = γ − 1 + log(2) ≈ 0.27036.

� For a more original example, if we take m = 10, then we have∫ +∞

0

[
e−x

10(1− e−x/10)
− 1

x
e−x
]
dx = γ − 7129

2520
+ log(10) ≈ 0.05083.

The result below gives a new one-integer-parameter integral formula in-
volving power, exponential and logarithmic functions, and a new constant not
mentioned in the literature.

Proposition 3.4 We have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
log

(
1

1− e−x

)
dx =

π2

12
+

1

2
− log(θ),

where

θ =
+∞∏
q=1

(
1 +

1

q

)1/q

≈ 3.51749.

Proof. Using the logarithmic series expansion, the Fubini-Tonelli integral
theorem, which is validated because the integrand is non-negative by the first
result of Lemma 2.1, Proposition 3.1, the classical formula

∑+∞
q=1(1/q

2) = π2/6
and telescopic developments, we get∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
log

(
1

1− e−x

)
dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x

(
+∞∑
q=1

1

q
e−qx

)
dx

=
+∞∑
q=1

1

q

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−qxdx

}

=
+∞∑
q=1

1

q

[
1

2q
+

1

2(1 + q)
− log

(
1 +

1

q

)]

=
1

2

+∞∑
q=1

1

q2
+

1

2

+∞∑
q=1

1

q(q + 1)
−

+∞∑
q=1

1

q
log

(
1 +

1

q

)

=
π2

12
+

1

2

+∞∑
q=1

(
1

q
− 1

q + 1

)
− log

[
+∞∏
q=1

(
1 +

1

q

)1/q
]

=
π2

12
+

1

2
− log(θ).
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This concludes the proof. �

The one-parameter integral result in [4, entry 144(6)] and [5, entry 3.4311,
page 361], as recalled in Proposition 1.1, is demonstrated below. It is mainly
based on Proposition 3.1.

Proposition 3.5 For any r > 0, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
e−rxdx =

(
r +

1

2

)
log

(
1 +

1

r

)
− 1.

Proof. Using the exponential primitive, the Fubini-Tonelli integral theorem,
which is validated because the integrand is non-negative by the first result of
Lemma 2.1, Proposition 3.1, and usual primitives and limits, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
e−rxdx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x

[∫ +∞

r

e−qxdq

]
dx

=

∫ +∞

r

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x
e−qxdx

}
dq

=

∫ +∞

r

[
1

2q
+ log(q) +

1

2(1 + q)
− log(1 + q)

]
dq

=

[
1

2
log(q) + q log(q)− q +

1

2
log(1 + q)− (1 + q) log(1 + q) + q

]q→+∞

q=r

=

[
−
(
q +

1

2

)
log

(
1 +

1

q

)]q→+∞

q=r

=

(
r +

1

2

)
log

(
1 +

1

r

)
− 1.

This ends the proof. �

This fills a certain gap in [5, entry 3.4311, page 361] by providing a rigorous
proof. However, we do not claim that it is unique; some other mathematical
ways are certainly possible.

The result below goes one step further. It gives an integral formula for the
same integrand as in the result above, but multiplied by 1/x.

Proposition 3.6 For any s > 0, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−sxdx

=
1

4

[
1 + 2s− 2s(s+ 1) log

(
1 +

1

s

)]
.
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Proof. Using the exponential primitive, the Fubini-Tonelli integral theorem,
which is validated because the integrand is non-negative by the first result of
Lemma 2.1, Proposition 3.5, and usual primitives and limits, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−sxdx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2

[∫ +∞

s

e−rxdr

]
dx

=

∫ +∞

s

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
e−rxdx

}
dr

=

∫ +∞

s

[(
r +

1

2

)
log

(
1 +

1

r

)
− 1

]
dr

=

{
1

2
r

[
(r + 1) log

(
1 +

1

r

)
− 1

]}r→+∞

r=s

=
1

4

[
1 + 2s− 2s(s+ 1) log

(
1 +

1

s

)]
.

This concludes the proof. �

Some special cases are given below.

� If we take s = 1, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−xdx =

1

4
[3− 4 log(2)] ≈ 0.05685.

� If we set, for any s > 0 and x > 0,

h(x) =

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−sx,

then the Laplace transform of h at λ > 0 is given by

L(h)(λ) =

∫ +∞

0

h(x)e−λxdx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−(s+λ)xdx

=
1

4

[
1 + 2(s+ λ)− 2(s+ λ)(s+ λ+ 1) log

(
1 +

1

s+ λ

)]
.

To the best of our knowledge, this is a new Laplace transform formula
in the literature.
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The result below complements the above proposition by considering 1−e−tx
instead of e−sx in the integrand, which leads to a new integral formula.

Proposition 3.7 For any t > 0, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
(1− e−tx)dx

=
1

2
t

[
(t+ 1) log

(
1 +

1

t

)
− 1

]
.

Proof. Using the exponential primitive, the Fubini-Tonelli integral theorem,
which is validated because the integrand is non-negative by the first result of
Lemma 2.1, Proposition 3.5, and usual primitives and limits, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
(1− e−tx)dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2

[∫ t

0

e−rxdr

]
dx

=

∫ t

0

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
e−rxdx

}
dr

=

∫ t

0

[(
r +

1

2

)
log

(
1 +

1

r

)
− 1

]
dr

=

{
1

2
r

[
(r + 1) log

(
1 +

1

r

)
− 1

]}r=t
r→0

=
1

2
t

[
(t+ 1) log

(
1 +

1

t

)
− 1

]
.

This ends the proof. �

Some special cases are given below.

� If we take t = 1, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
(1− e−x)dx =

1

2
[2 log(2)− 1]

≈ 0.19314.

� If we take t = 2, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
(1− e−2x)dx = 3 log

(
3

2

)
− 1

≈ 0.21639.
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The result below proposed to combine Propositions 3.6 and 3.7 for a concise
formula.

Proposition 3.8 We have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
dx =

1

4
.

Proof. It follows from Propositions 3.6 and 3.7 with s = 1 and t = 1, respec-
tively, that ∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
[(1− e−x) + e−x]dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
(1− e−x)dx

+

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−xdx

=
1

2
[2 log(2)− 1] +

1

4
[3− 4 log(2)] =

1

4
.

The choice of s = 1 and t = 1 can in fact be replaced by s = t without affecting
the development.

An more direct proof independent of Propositions 3.6 and 3.7 is given
below.
Alternative proof. Identifying the (non-trivial) primitive of the integrand and
using limits, in particular e−x ∼ 1− x+ x2/2 at x = 0, we get∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
dx =

[
−e
−x − 1 + x

2x2

]x→+∞

x→0

=
1

4
.

This ends the proof. �

The result below gives a new one-integer-parameter integral formula in-
volving power, exponential and logarithmic functions. We also mention the
important role of an original infinite product sequence, which can be deter-
mined explicitly for some values of the parameter involved.

Proposition 3.9 For any n ∈ N\{0}, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−nx

x2(1− e−x)
dx = log(υn),
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where

υn =
+∞∏
r=n

[
e−1
(

1 +
1

r

)r+1/2
]
.

In particular, for n = 1, . . . , 8, we have

υ1 =
e√
2π
≈ 1.08444, υ2 =

e2

4
√
π
≈ 1.04221, υ3 =

e3

9

√
2

3π
≈ 1.02806,

υ4 =
3e4

64
√

2π
≈ 1.02101, υ5 =

12

625
e5
√

2

5π
≈ 1.01678,

υ6 =
5e6

648
√

3π
≈ 1.01397, υ7 =

360e7

117649

√
2

7π
≈ 1.01196

and

υ8 =
315e8

524288
√
π
≈ 1.01046.

Proof. Using the geometric series expansion, the Fubini-Tonelli integral the-
orem, which is validated because the integrand is non-negative by the first
result of Lemma 2.1 and Proposition 3.5, we get∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−nx

x2(1− e−x)
dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2

(
+∞∑
r=n

e−rx

)
dx

=
+∞∑
r=n

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
e−rxdx

}

=
+∞∑
r=n

[(
r +

1

2

)
log

(
1 +

1

r

)
− 1

]

= log

{
+∞∏
r=n

[
e−1
(

1 +
1

r

)r+1/2
]}

= log(υn).

This concludes the proof. �

We mention that υn tends to 1 as n tends to +∞, which is consistent with
the fact that e−nx tends to 0 in the integrand.

Some special cases are given below.

� If we take n = 1, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−x

x2(1− e−x)
dx = log(υ1) ≈ 0.08106.
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� If we take n = 2, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
e−2x

x2(1− e−x)
dx = log(υ2) ≈ 0.04134.

The result below exploits Proposition 3.5 to derive a new integral formula.
An unreferenced constant, defined as an infinite product, emerged naturally.

Proposition 3.10 We have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
log

(
1

1− e−x

)
dx = log(ξ),

where

ξ =
+∞∏
r=1

[
e−1/r

(
1 +

1

r

)(r+1/2)/r
]
≈ 1.05302.

Proof. Using the logarithmic series expansion, the Fubini-Tonelli integral
theorem, which is validated because the integrand is non-negative by the first
result of Lemma 2.1 and Proposition 3.5, we get∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
log

(
1

1− e−x

)
dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2

(
+∞∑
r=1

1

r
e−rx

)
dx

=
+∞∑
r=1

1

r

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x2
e−rxdx

}

=
+∞∑
r=1

1

r

[(
r +

1

2

)
log

(
1 +

1

r

)
− 1

]

= log

{
+∞∏
r=1

[
e−1/r

(
1 +

1

r

)(r+1/2)/r
]}

= log(ξ).

This concludes the proof. �

The result below is our final proposition. It gives a new one-parameter
integral formula, still based on power, exponential and logarithmic functions.

Proposition 3.11 For any u > 0, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x4
(1− e−ux)dx

=
1

12

[
2u(u+ 1)− u2(2u+ 3) log

(
1 +

1

u

)
+ log(1 + u)

]
.
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Proof. Using the exponential primitive, the Fubini-Tonelli integral theorem,
which is validated because the integrand is non-negative by the first result of
Lemma 2.1, Proposition 3.6, and usual primitives and limits, we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x4
(1− e−ux)dx

=

∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3

[∫ u

0

e−sxds

]
dx

=

∫ u

0

{∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x3
e−sxdx

}
ds

=
1

4

∫ u

0

[
1 + 2s− 2s(s+ 1) log

(
1 +

1

s

)]
ds

=
1

4

{
1

3

[
2s(s+ 1)− s2(2s+ 3) log

(
1 +

1

s

)
+ log(1 + s)

]}s=u
s→0

=
1

12

[
2u(u+ 1)− u2(2u+ 3) log

(
1 +

1

u

)
+ log(1 + u)

]
.

This ends the proof. �

Some special cases are given below.

� If we take u = 1, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x4
(1− e−x)dx =

1

3
[1− log(2)]

≈ 0.10228.

� If we take u = 2, then we have∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]
1

x4
(1− e−2x)dx

=
1

12

[
12− 28 log

(
3

2

)
+ log(3)

]
≈ 0.14546.

4 An independent result

An inequality of independent interest is given in this section. It is related to
Lemma 2.1, but focuses on an original bound for the exponential function e−x.
Two different proofs are given.

Lemma 4.1 For any x ≥ 0, we have

e−x ≥ 1− 2x

2 + x
.

For any x ≤ 0, this inequality is reversed.
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Proof. Two proofs are given, with different mathematical bases.
Proof 1. For any x ∈ R, let us set

f(x) = x− 1

2
(x+ 2)(1− e−x).

Using standard differentiation rules, a factorization and the basic exponential
inequality ex ≥ 1 + x for any x ∈ R, we have

f ′(x) =
1

2
e−x(ex − 1− x) ≥ 0.

Therefore, f(x) is non-decreasing for any x ∈ R. Since f(0) = 0, we have
f(x) ≥ f(0) = 0 for any x ≥ 0, which is equivalent to

e−x ≥ 1− 2x

2 + x
.

We also have f(x) ≤ f(0) = 0 for any x ≤ 0, which is equivalent to

e−x ≤ 1− 2x

2 + x
.

The desired inequalities are established.
Proof 2. For any y > −1, the following logarithmic inequality is well-known:

log(1 + y)

y
≥ 2

2 + y
.

See, for instance, [3], in which nine different proofs are proposed. Applying it
with y = ex − 1 for any x ∈ R satisfying y > −1, we get

x

ex − 1
=

log(1 + y)

y
≥ 2

2 + y
=

2

1 + ex
.

For any x ≥ 0, the following equivalences hold:

x

ex − 1
≥ 2

1 + ex
⇔ x

2
≥ ex − 1

1 + ex
⇔ x

2
≥ 1− e−x

1 + e−x
⇔ x

2
≥ 1− 2e−x

1 + e−x

⇔ 2e−x

1 + e−x
≥ 1− x

2
⇔ 2e−x ≥

(
1− x

2

)
(1 + e−x)

⇔
(

1 +
x

2

)
e−x ≥ 1− x

2
⇔ e−x ≥ 1− x/2

1 + x/2
= 1− x

1 + x/2
= 1− 2x

2 + x
.

On the same mathematical basis, for any x ≤ 0, the following equivalences
hold:

x

ex − 1
≥ 2

1 + ex
⇔ x

2
≤ ex − 1

1 + ex
⇔ x

2
≤ 1− e−x

1 + e−x
⇔ x

2
≤ 1− 2e−x

1 + e−x

⇔ 2e−x

1 + e−x
≤ 1− x

2
⇔ 2e−x ≤

(
1− x

2

)
(1 + e−x)

⇔
(

1 +
x

2

)
e−x ≤ 1− x

2
⇔ e−x ≤ 1− x/2

1 + x/2
= 1− x

1 + x/2
= 1− 2x

2 + x
.
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This ends the proof. �

For any x ≥ 0, since x+ 2 ≥ 2, we obviously have

e−x ≥ 1− 2x

2 + x
≥ 1− x.

This improves a well-known exponential inequality, which is mainly of interest
for x ∈ (0, 1).

As an interpretation of the first proof, this exponential inequality is equiv-
alent to the first result in Lemma 2.1. It can be used for various mathematical
purposes, where a sharp lower or upper bound of the exponential function e−x

is needed, depending on x ≥ 0 or x ≤ 0.

5 Open problem

Based on the statements of the previous propositions, one can think of search-
ing formulas for integrals of the following form:∫ +∞

0

[
x− 1

2
(x+ 2)(1− e−x)

]ε
1

xζ
e−vxdx,

where ε > 0, ζ > 0 and v > 0. This article has focused on the special case
ε = 1. However, the combined presence of ε and ζ can ensure the convergence
of this integral under certain assumptions. To the best of our knowledge, there
is no general formula for this.

6 Conclusion

In this article, we have completed the collection of formulas involving power,
exponential and logarithmic functions within an original integral relation.
Many new formulas are given, including one from an old result that inspired
this research. Some of them involve the Euler-Mascheroni constant, extending
existing results. The expression of the Laplace transform of certain original
power-exponential functions are also obtained. The techniques used in the
proofs are quite understandable and can be reused beyond the scope of the
article. An open problem concludes the article, broadening its horizon with a
solid mathematical challenge.
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