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Abstract

In this study, we introduce generalized difference sequence
space of interval numbers using by Orlicz function and exam-
ine some properties of this class of interval number sequences.
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1 Introduction

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz [24] as follows Z(∆) = {x = (xk) ∈ w : (∆xk) ∈ Z} for Z = c, coand
l∞, where ∆xk = xk − xk+1 for all k ∈ N . Later, difference sequences were
studied by many authors.The topic of interval analysis has been studied for
a long time. For a detailed discussion we may suggest refer to some books,
for example Moore [20]. The main issue is to regard to closed intervals as a
kind of “points”. Hereafter we will called them “interval numbers”. Interval
arithmetic was first suggested by Dwyer [12] in 1951. Development of interval
arithmetic as a formal system and evidence of its value as a computational
device was provided by Moore [20] in 1959 and Moore and Yang [14] in 1962.
Furthermore, Moore [20], Dwyer [13] and Markov [15] have developed applica-
tions to differential equations.

Chiao in [11] introduced sequence of interval numbers and defined usual
convergence of sequences of interval number. Sengonul and Eryilmaz in [16]
introduced and studied bounded and convergent sequence spaces of interval
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numbers and showed that these spaces are complete metric space. Recently,
Esi in [1, 2, 3, 4, 5, 6], Esi and Braha [7], Esi and Esi [8], Esi and Hazarika [9]
defined and studied different properties of interval numbers.

We denote the set of all real valued closed intervals by IR. Any elements of
IR is called interval number and denoted by x= [xl, xr]. Let xl and xr be first
and last points of x interval number, respectively. For x1, x2 ∈ IR, we have
x1= x2 ⇔ x1l=x2l , x1r=x2r , x1+x2={x ∈ R:x1l + x2l ≤ x ≤ x1r + x2r}, and
if α ≥ 0, then αx={x ∈ R:αx1l ≤ x ≤ αx1r} and if α< 0, then αx={x ∈ R:
αx1r ≤ x ≤ αx1l},

x1. x2={x ∈ R: min{x1l . x2l , x1l .x2r , x1r .x2l , x1r .x2r} ≤ x

≤ max{x1l .x2l , x1l .x2r , x1r .x2l , x1r .x2r}.

The set of all interval numbers IR is a complete metric space defined by

d(x = (x1, x2) = max{|x1l − x2l |, |x1r − x2r |} [11].

In the special case x1= [a, a] and x2= [b, b], we obtain usual metric of R.
Let us define transformation f : N → R by k → f(k) =xk, x= (xk) . Then
x= (xk) is called sequence of interval numbers. The xk is called kth term of
sequence x= (xk). Let widenotes the set of all interval numbers with real terms
and the algebraic properties of wi can be found in [15].

Now we recall the definition of convergence of interval numbers:
Definition 1.1. [ 11] A sequence x= (xk) of interval numbers is said

to be convergent to the interval number x0 if for each ε> 0 there exists a
positive integer ko such that d(xk, x0) <ε for all k ≥ ko and we denote it by
limkxk=x0.

Thus, limkxk= x0 ⇔ limkxkl=xol and limkxkr=xor
The set of all closed intervals in IR is not real vector space. The main reason

is that there will be no additive inverse element for each interval numbers. In
this work we wish to present some special classes of interval numbers on the
interval valued metric space.

Let p= (p) be a bounded sequence of strictly positive real numbers. If
H=supkpk, then for any two complex numbers ak and bk we have |ak + bk|pk ≤
C(|ak|pk + |bk|pk),where C= max(1,2H−1). An Orlicz function is a function
M : [0, ∞) → [0, ∞) which is continuous, nondecreasing and convex with
M(0) = 0,M(x) > 0 for x> 0 and M(x)→∞ as X →∞.

Sequence spaces defined by Orlicz functions have been investigated by Et
et.al.[21], Tripathy et.al. [22], Tripathy and Dutta [23] and many others.

Let M be an Orlicz function, s ≥ 0 is a reel number and p= (p) be a se-
quence of positive real numbers such that 0 ≤ h=infkpk ≤ pk ≤ supkpk=H<∞.
Let Ps denotes the set of all subsets of N, that do not contain more than s
elements. With (φs) , we will denote a nondecreasing sequence of positive real
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numbers such that (s−1)φs−1 ≤ (s−1)φs and φs →∞ as s→∞. The class of
all the sequences (φs) satisfying this property is denoted by Φ. We introduce
the following sequence space of interval number sequences.

lp(M,∆, p, Φ) ={(xk) ∈ wi: sups≥1,σ∈Ps

1
φs

∑
k∈σ [M(d(∆xk,0)

r
)]pk<∞, for

some r> 0}

2 Main Result

Theorem 2.1 The set lp(M,∆, p,Φ) of sequences of interval numbers defined
by a Orlicz function are closed under the coordinatewise addition and scalar
multiplication.

Proof. Let define the operations + and . as follows:

+:lp(M,∆, p, Φ)× lp(M,∆, p, Φ)→ lp(M,∆, p,Φ)

and
.: IR× lp(M,∆, p, Φ)→ lp((M,∆, p,Φ) .

Let (xk), (yk) ∈ lp(M,∆, p,Φ) , then we may write

sups≥1,σ∈Ps

1
φs

∑
k∈σ [M(d(∆xk,0)

r
)]pk<∞ and sups≥1,σ∈Ps

1
φs

∑
k∈σ [M(d(∆yk,0)

r
)]pk<∞.

Since d(∆xk + ∆yk, 0) ≤ d(∆xk, 0) + d(∆yk, 0) and using nondecreasing
of M Orlicz function, we obtain

M(d(∆xk + ∆yk, 0)) ≤M(d(∆xk, 0) + d(∆yk, 0))

≤M(d(∆xk, 0)) +M(d(∆yk, 0)) .

Since the sequence p= (pk) satisfies 0 ≤ h=infkpk ≤ pk ≤ supkpk=H<∞
and since C= max(1,2H−1) , then

sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(d(∆xk+∆yk, 0)]pk ≤ sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(d(∆xk, 0)+M(d(∆yk, 0)]pk

≤ C sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M(d(∆xk, 0)]pk

+C sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M(d(∆yk, 0))]pk .

Then

sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(d(∆xk + ∆yk, 0))]pk
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≤ sups≥1,σ∈Ps

1

φs

∑
k∈σ

C[M(d(∆xk, 0))pk ]+sups≥1,σ∈Ps

1

φs

∑
k∈σ

C[M(d(∆yk, 0))]pk<∞.

Therefore (xk) + (yk) ∈ lp(M,∆, p,Φ) . Now, let (xk) ∈ lp(M,∆, p,Φ).
Then

sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk<∞.

Let α ∈ R. Since d(α∆xk, 0) = |α|d(∆xk, 0) then M (d(α∆xk, 0)) =M(|α|d(∆xk, 0)) ≤
|α|M(d(∆xk, 0)) and since p= (pk) is bounded sequence of positive numbers,
then we obtain [M(d(α∆xk, 0))]pk ≤ |α|pk [M(d(∆xk, 0))]pk . Then we may
write sups≥1,σ∈Ps

1
φs

∑
k∈σ [M(d(α∆xk, 0))]pk ≤ sups≥1,σ∈Ps

1
φs

∑
k∈σ |α|pk [M(d(∆xk, 0))]pk<∞.So,

αxk ∈ lp (M,∆, p,Φ).

Theorem 2.2 Let p= (pk) be bounded. The class of sequences of interval
numbers lp (M,∆, p,Φ) is complete metric space with respect to the following
metric

dp(x, y) = inf{r
pk
T : sup

s≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(∆xk,∆yk)

r
)]pk ≤ 1}

where T= max(1,supkpk=H<∞).

Proof. It can be easily verified that the class is metric space. Let (xi) ={xi0, xi1, . . . }
be a Cauchy sequence in lp(M,∆, p,Φ) . Then dp(x

i, xj) → 0 as i, j → ∞.
For given ε> 0 choose r> 0 and xo> 0 be such that ε

rx0
> 0 and

M( rx0
2

) ≥ 1. Then there exists no ∈ N such that dp(x
i, xj) < ε

rx0
for all

i, j ≥ no. This implies

inf{r
pk
T : sup

s≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(∆xik,∆x

j
k)

r
)]pk ≤ 1}< ε

rx0

.

Now, M(
d(∆xik,∆x

j
k)

r
) ≤ 1 ≤M( rx0

2
) implies that d(∆xik,∆x

j
k)≤ rx0

2
. So we obtain

d(∆xik, ∆xjk) <
rx0
2

ε
rx0

= ε
2
. This implies (x

(i)
k ) is a Cauchy sequence of interval

numbers in IR for all fixed k ∈ N . Since the set of interval numbers set IR is
complete, so there exists an interval number (xk) such that xik → xk as i→∞.
Now

limj→∞sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(∆xik,∆x

j
k)

r
)] ≤ 1⇒ sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(∆xik,∆xk)

r
)] ≤ 1.

Let j ≥ no then taking infimum of such r, we have dp(x
i
k, xk) <ε. Now

using dp(xk 0) ≤ dp(xk, xik) + dp(x
i
k, 0) we get (xk) ∈ lp(M,∆, p,Φ) . Since

{x(i)
k } is arbitrary Cauchy sequence then the space lp(M,∆, p,Φ) is complete.
Now we give relation between lp(M,∆, p,Φ1) and lp(M,∆, p,Φ2) with re-

spect to an Orlicz function.
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Theorem 2.3 lp(M,∆, p,Φ1) ⊂ lp(M,∆, p,Φ2) if and only if A =sups≥1
φ1s
φ2s
<∞.

Proof. Let x= (xk) ∈ lp(M,∆, p,Φ1) and A =sups≥1
φ1s
φ2s
<∞. Then we can

write

sups≥1,σ∈Ps

1

φ2
s

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk ≤ Asups≥1,σ∈Ps

1

φ1
s

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk

Therefore x= (xk) ∈ lp(M,∆, p,Φ2) . Conversely, let lp(M,∆, p,Φ1) ⊂
lp(M,∆, p,Φ2) and x= (xk) ∈ lp(M,∆, p,Φ1) . Then there exists r> 0 such
that

sup
s≥1,σ∈Ps

1

φ1
s

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk<∞.

Now suppose that A=sups≥1
φ1s
φ2s

=∞. Then there exists a sequence of natural

numbers (φs) such that limj→∞
φ1sj
φ2sj

=∞. Hence we can write

sups≥1,σ∈Ps

1

φ2
s

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk ≥ Asups≥1,σ∈Ps

1

φ1
s

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk=∞.

Therefore x= (xk) ∈ lp(M,∆, p,Φ2) which is contradiction to the fact that

lp(M,∆, p,Φ1) ⊂ lp(M,∆, p,Φ2) . Hence A =sups≥1
φ1s
φ2s
<∞. The following

result is a consequence of this theorem.

Theorem 2.4 Let M be an Orlicz function. Then lp(M,∆, p,Φ1) = lp(M,∆, p,Φ2)

if and only if sups≥1
φ1s
φ2s
<∞ and sups≥1

φ2s
φ1s
<∞.

Proof. It is obvious.

Theorem 2.5 Let M1 and M2 be two Orlicz functions which satisfying the
42− condition. Then lp(M1,∆, p,Φ) ⊂ lp(M1oM2,∆, p,Φ).

Proof. Let x= (xk∈lp(M,∆, p,Φ)and ε> 0 be given and choose δ with 0 <δ< 1
such

that M1(t) <ε for 0 ≤ t ≤ δ. We may write

sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M1oM2(
d(∆xk, 0)

r
)]pk=sups≥1,σ∈Ps

1

φs

∑
1

[M1oM2(
d(∆xk, 0)

r
)]pk

+ sup
s≥1,σ∈Ps

1

φs

∑
2

[M1oM2(
d(∆xk, 0)

r
)]pk
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where the summation
∑

1 is over M2(d(∆xk,0)
r

) ≤ δ and the summation
∑

2 is

over M2(d(∆xk,0)
r

) >δ. Since M1 is continuous, we have

sups≥1,σ∈Ps

1

φs

∑
1

[M1oM2(
d(∆xk, 0)

r
)]pk ≤ max(1, M1(1))Hsups≥1,σ∈Ps

1

φs

∑
1

[M2(
d(∆xk, 0)

r
)]X

Now for M2(d(∆xk,0)
r

) >δ, we use the fact that

M2(
d(∆xk, 0)

r
) <M2(

d(∆xk, 0)

r
)δ−1 ≤ 1 +M2(

d(∆xk, 0)

r
)δ−1

Since M1 satisfies 42− condition,then there exists B> 1 such that

M1[M2(
d(∆xk, 0)

r
)] ≤M1[1 +M2(

d(∆xk, 0)

r
)δ−1]

≤ 1

2
M1(2)+

1

2
M1(2M2(

d(∆xk, 0)

r
)δ−1) <

1

2
BM1(2)M2(

d(∆xk, 0)

r
)δ−1+

1

2
BM1(2)M2(

d(∆xk, 0)

r

=BM1(2)M2(
d(∆xk, 0)

r
)δ−1

Then we have

sup
s≥1,σ∈Ps

1

φs

∑
2

[M1oM2(
d(∆xk, 0)

r
)]pk

≤ max(1, BM1(2)δ−1)H sup
s≥1,σ∈Ps

1

φs

∑
2

[M2(
d(∆xk, 0)

r
)]pk

≤ max(1, BM1(2)δ−1)H sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M2(
d(∆xk, 0)

r
)]pk

Hence

sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M1oM2(
d(∆xk, 0)

r
)]pk

≤ max(1, M1(1))H sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M2(
d(∆xk, 0)

r
)]pk

+max(1, BM1(2)δ−1)H sup
s≥1,σ∈Ps

1

φs

∑
k∈σ

[M2(
d(∆xk, 0)

r
)]pk

It follows that x= (xk) ∈ lp(M1oM2,∆, p,Φ).
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Theorem 2.6 Let M and N be two Orlicz functions. Then lp(M,∆, p,Φ)∩
lp(N,∆, p,Φ) ⊂ lp(M +N,∆, p,Φ).

Proof. Let x= (xk) ∈ lp(M,∆, p,Φ) ∩ lp(N,∆, p,Φ). We have

[(M +N)(d(∆xk, 0))]pk= [M(d(∆xk, 0)) +N(d(∆xk, 0))]pk

≤ C[M(d(∆xk, 0))]pk + C[N(d(∆xk, 0))]pk .

Then we can write

sups≥1,σ∈Ps

1

φs

∑
k∈σ

[(M +N)(d(∆xk, 0))]pk

≤
Csups≥1,σ∈Ps

1
φs

∑
k∈σ [M(d(∆xk, 0))]pk+Csups≥1,σ∈Ps

1
φs

∑
k∈σ [N(d(∆xk, 0))]pk .

Hence we obtain x= (xk) ∈ lp(M +N,∆, p,Φ).

Theorem 2.7 Let M be an Orlicz function, then a) l∞ (∆) ⊂ lp (M,∆, p,Φ) , where
l∞ (∆) = {x= (xk) : supk |∆xk| <∞}.

b) If M is bounded then lp(M,∆, p, Φ)=wi.
Proof. a) Let x= (xk) ∈ l∞(∆). Then there exists a positive integer G ≥ 0
such that d(∆xk, 0) ≤ G. Then the sequence (M(d(∆xk, 0)) is also bounded.
Hence

[M(d(∆xk, 0))]pk ≤ [GM(1)]pk ≤ [GM(1)]H<∞.
Therefore x= (xk) ∈ lp(M,∆, p,Φ) . b) If M Orlicz function is bounded then
for any x= (xk) ∈ wi, [M(d(∆xk, 0))]pk ≤ Lpk ≤ LH<∞. Hence we obtain
lp(M,∆, p,Φ=wi.

Let X be a sequence space. Then X is called solid (or normal) if (αkxk) ∈ X
whenever (xk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N .

Theorem 2.8 The space lp(M,∆, p,Φ) is solid space.

Proof. a) Let α= (αk) be a sequence of scalars such that |αk| ≤ 1 for all
k ∈ N.

We get

sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(αk∆xk, 0)

r
)]pk

≤ sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
sup|αk|d(∆xk, 0)

r
)]pk ≤ sups≥1,σ∈Ps

1

φs

∑
k∈σ

[M(
d(∆xk, 0)

r
)]pk

Then the result follows from the above inequality.
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Theorem 2.9 Let M be an Orlicz function.

a) If 0 < infpk=h ≤ pk ≤ 1 then lp (M,∆, p,Φ) ⊂ lp (M,∆, Φ) ,
b) If 1 ≤ pk ≤ suppk<∞, then lp (M,∆,Φ) ⊂ lp (M,∆, p,Φ) ,
c) If 0 <pk ≤ qk for each k ∈ N, then lp(M,∆, p,Φ) ⊂ lp(M,∆, q,Φ).

Proof. a) The proof is obtained by using the following inequality:

[M(
d(∆xk, 0)

r
)] ≤ [M(

d(∆xk, 0)

r
)]pk

b) The proof is obtained from the following inequality:

[M(
d(∆xk, 0)

r
)]pk ≤ [M(

d(∆xk, 0)

r
)]

c) Let x= (xk) ∈ lp(M,∆, p,Φ), that is sups≥1,σ∈Ps

1
φs

∑
k∈σ [M(d(∆xk,0)

r
)]pk<∞.

This implies that [M(d(∆xk,x0)
r

)]pk ≤ 1 for sufficiently large k. Since M Orlicz
function is non-decreasing we have

[M(
d(∆xk, 0)

r
)]qk ≤ [M(

d(∆xk, 0)

r
)]pk ,

i.e., x= (xk) ∈ lp(M,∆, q,Φ). This completes the proof.

3 Open Problem

We introduced generalized difference sequence space of interval numbers using
by Orlicz function and examined some properties of resulting sequence classes
of interval numbers. It is open problem that this class of interval number
sequences has similar properties in two or three-dimensional space?
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