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Abstract

The objective of the present paper is to study Wy* curvature
tensor on e-Kenmotsu manifold. We have analyzed & — Wy*-
flat, ¢-Wy*- projectively semisymmetric and Wy*.QQ = 0 on e-
Kenmotsu manifold. Also, we have considered the conditions
R, X)) Wy* — Wp* (€, X).R = 0 and R(&, X)Wy — Wy (€, X).R =
LyQ(g, Wo*) in e-Kenmotsu manifold. Finally, an example
of 5-dimensional c-Kenmotsu manifold has been constructed
which verifies certain results.
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1 Introduction

The geometry of indefinite metric has significant use in physics and relativ-
ity in the credential of Einstein’s theory of general relativity, as the nature of
metric depend on the geometric properties of the manifold.

The notion of indefinite metrics of almost contact manifolds was firstly initi-
ated by Takahashi[16] in 1969. One of the importance of indefinite metric is,
that it allows tangent vectors to be classified into timelike, null, and spacelike
vectors. These circumstances lead many authors to investigate and explore
the importance and applications of the manifolds with indefinite metrics.
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Kenmotsu[6] introduced a special class of contact Riemannian manifolds, sat-
isfying certain conditions, which was later named as Kenmotsu manifold. Fur-
ther De and Sarkar([3] studied on e-Kenmotsu manifolds and proved the exis-
tence of new indefinite structure on the manifold which influences the curvature
of the manifold. Later on several other authors[18, 9, 4, 5] studied e-Kenmotsu
manifolds and have found interesting results on indefinite structures.
Pokarial and Mishra[13] introduced new tensor fields in 1970 such as W, and
E tensor fields on Riemannian manifolds. Later on Matsumoto, Ianus and
Mihai[7] extended the study of these tensor fields on para Sasakian manifolds.
The concept of Wy* curvature tensor on 2n + 1 dimensional manifold was
explained by Pokhariyal[13] which is defined as follows

Wo'(X,Y)Z = R(X,Y)Z + %[S(Y, 2)X — g(X, 2)QY], (1)

where R and S are the curvature tensor and Ricci tensor respectively and
X,Y,Z € x(M). Further the studies have been made by Uygun, Dirik and
Atceken on W,* curvature tensor.

Motivated by the above study, in the present paper we study about Wy* cur-
vature tensor on e-Kenmotsu manifold. After introduction section 2 gives
the basic formulas and notations of e-Kenmotsu manifold. In section 3, we
study & — Wy*- flat e-Kenmotsu manifold. Section 4 deals with ¢-Wy*- projec-
tively semisymmetric condition which makes e-Kenmotsu manifold an Einstein
manifold. In Section 5 we study e- Kenmotsu manifold satisfying Wy*.QQ =
0. Section 6 deals with the study of conditions satisfying R(&, X).Wy* —
Wo* (€, X).R = 0 and R(&, X).Wo" — Wy (&, X).R = LyQ(g, Wy"). Finally
a b-dimensional example of e-Kenmotsu manifold has been constructed which
verifies certain results.

2 Preliminaries

We give some definitions and basic formulas which are necessary for proving
the results. An almost contact smooth manifold (M, g) of dimension 2n + 1 is
said to be almost contact metric manifold if it is a triple (¢, &, n),where ¢ is a
(1,1) tensor field, £ is a characteristic vector field (Reeb vector field), n is a
global 1-form, g is an associated metric of n satisfying the following ,

¢ =-I+n®¢ nE)=1 nop=0 ¢=0 (2)

where [ denotes the identity endomorphism.
We obtain a Riemannian metric g and a (1,1)-tensor field ¢ of contact metric
on doing polarization of dn on the contact subbundle n = 0 such that

dn(X,Y) = g(X, ¢Y), (3)
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where X, Y denote arbitrary vector fields on M. A semi-Riemannian metric|3]
g on M is said to be compatible with almost contact structure if it satisfies,

9(@X, oY) = g(X, V) —en(X)n(Y), g(X,§) = en(X), (4)

V XY € x(M), where x(M) is a lie algebra of smooth vector fields and
€= =1.
An e-contact metric manifold M satisfying

(Vxo)(Y) = —g(X, ¢Y)§ — en(Y)oX, (5)

where V denotes the Levi-civita connection with respect to g is said to be an
e-Kenmotsu manifold [7].

An e-almost contact metric manifold is said to be an e-Kenmotsu manifold if
the following relations hold [3],

Vx§ = e(X —n(X)§), (6)

(Vxn)Y = [g(X,Y) —en(X)n(Y)], (7)

where V is the Levi-Civita connection with respect to g.
In an e-Kenmotsu manifold the following relations hold[3]

R(X,Y)E =n(X)Y —n(Y)X, (8)

R(& X)Y = —n(Y)X —eg(X,Y)E, (9)

R(E, X)€ = —R(X,§)§ = X —n(X)E, (10)
N(R(X,Y)Z) = elg(X, Z)n(Y) — g(Y, Z)n(X)], (11)
S(X,8) = —(n = 1)n(X), (12)

Q€ = —e(n —1)¢, (13)

S(@X,0Y) = S(X,Y) +e(n — Dn(X)n(Y), (14)

where XY acts as vector fields on M.

Definition 2.1 [6/ An e-Kenmotsu manifold M is said to be an n-Einstein
manifold if its Ricci tensor S of type (0, 2) is of the form

S(X,Y) = ag(X,Y) + bn(X)n(Y), (15)

where a and b are smooth functions on M. If b = 0, then an n-Einstein manifold
becomes an Finstein manifold.
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Definition 2.2 [3] If the tensors R.Wy™ and Q(g, Wy*) are linearly dependent
then the manifold is called Weyl-pseudosymmetric which is given by

R.WO* = LMQ(Q, WO*), (16)
where, Ly is some function and

Q((g, WO*)(Xl,XQ, ,XK,X, Y) = —WO*((X A\ Y)Xl,XQ, 7XK) — ...

W (X1 e Xie — 1, (X AY) X ) (17)
(XAY)Z =g(Y,Z) - g(X,2)Y (18)
for (0, K)-tensor field, K > 1 on M.
3 &-Wy'- flat - Kenmotsu manifold
Definition 3.1 An e-Kenmotsu manifold is said to be E-Wy*-flat if
W' (X,Y)¢ =0, (19)

for any vector fields X, Y on M.

Theorem 3.2 Let M be an e- Kenmotsu manifold of dimension 2n + 1 satis-
fying E-Wy*- flat condition. Then the manifold reduces to n-FEinstein manifold.

Proof 3.1 Consider Equation(1) and replacing Z by & we get,
1
R(X.Y)E + - [S(.9X — g(X. QY] =0 (20
By making use of equations (8) and (12), we obtain

AXY = 9(¥)X = 5[0 = Dy(V)X +en(X)Q¥] =0.  (21)

Taking inner product with respect to Z the above equation reduces to

-1

n(X)g(Y.2)=n(Y)g(X, 2)~ "

1
N(Y)g(X, 2) = 5-en(X)S(Y, 2) = 0. (22)
Replacing X by & and solving for S(Y, Z), the above equation becomes
S(Y, Z) = 2neg(¥, Z) — (3n — (Y )n(Z). (23)

Thus the result follows.
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4  ¢-W,*- projectively semisymmetric condi-
tion on - Kenmotsu manifold

Definition 4.1 An e-Kenmotsu manifold is said to be ¢-Wy*- projectively

semisymmetric if
W' (X,Y).¢ =0, (24)

for any vector fields X, Y on M.

Theorem 4.2 Let M be an e- Kenmotsu manifold of dimension (2n+1) satis-
fying ¢-Wy*-projectively semisymmetric condition, then the manifold becomes
an Einstein manifold.

Proof 4.1 Now Fquation(24) can be written as
Wo (X, Y)$Z — oWy (X, Y)Z = 0. (25)

By making use of (1) the above equation reduces to

1 1
R(X.Y)0Z — 0R(X,Y)Z + 3-S(Y.0Z)X — 5-9(X.0Z)QY

1 1 (26)
——SY, 2)pX + —g(X, Z)pQY = 0.
S-SV, 2)0X + o-g(X, Z)6QY =0
Replacing X = £ and using (2) the preeceding equation becomes
1 1
5, 0¥ 2)E = eg(Y, ) +1(Z)pY + oen(Z)$QY =0 (27)

Now, by taking inner product of the above with X, we get

S-eS(Y, Zn(X) — (Y, Zn(X) +n(Z)g(6Y, X)+ 5 en(Z)S(6Y, X) = 0 (28)
Replacing X by & the above equation reduces to

S(Y,Z)=2neq(Y, Z.) (29)
Thus the result follows.

Theorem 4.3 An e-Kenmotsu manifold is p—Wy* -projectively semisymmetric
if and only if it is Wy -projectively flat.

Proof 4.2 Considering (26) by plugging Y = &, we get

R(X. €007+ [S(€,62)X ~g(X, 6Z)Q€)~6[R(X,§) 2+ [S(6, 2) X ~g(X, 2)Q€] = 0.
(30)
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By making use of (2) and (9), we obtain

e(n—1)
2n

e(n—1)

—le(Z.9oX =0 (31)

]g(XaqbZ)é_ [€+

[e +

Now, by taking inner product with W, the above equation reduces to

e(n—1)
2n

e + leg(X, ¢ Z)n(W) — en(Z)g(oX, W)] = 0. (32)

Replacing W = & the above equation becomes

3n —1
2n

9(X,¢Z) = 0. (33)

Since g(X,pZ) # 0, we have % = 0. Hence the manifold is Wy*-projectively

flat.
Conversely, suppose that M is Wy*-projectively flat, then we have Wy* = 0

and hence Wo*(X,Y).¢ = 0. Thus the result follows.

5 ¢ Kenmotsu manifold satisfying W,*.(Q = 0.
In this section we study e-Kenmotsu manifold satisfying,
Wy .Q = 0. (34)

Theorem 5.1 An e-Kenmotsu manifold satisfying Wy*.QQ = 0 is an n-FEinstein
manifold.

Proof 5.1 Now, Equation(34) can be written as,
Wo' (X, Y)QZ — Q(Wo (X, Y)Z) = 0. (35)
Replacing Y by €, the above equation becomes
Wo' (X, §)QZ — QWy"(X,£)Z) = 0. (36)
Now, by making use of equation (1), we get
R(X, S)QZ+21 1S(6,Q2)X—g(X, QZ)Q€]~QIR(X, ) Z+ —[s(€, 2) X —g(X, 2)Q€]] = 0.

on 2n
(37)
Using (2), (9) and (13), we obtain

n—1

1—
( 2n

M(QZ)X +e(1+7 2 )g(X, QZ)E+ (14" (Z2)QX ~e(L+ (n-1))g(X, 2)Q€ = 0.
33)
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Taking inner product of the above with Y we get

n—1 n—1

@Z)XY) + (1 TS Z(Y) + (L4 T n(2)S(X. )

+en(n —1)g(X, Z)n(Y) = 0.
(39)

(1-

Replacing Z by & and using (13) the above equation becomes

3n—1 n+1 3n —1
S Y) = e g (X, Y)— (1) T g (X)n(Y (= (X)n(Y) = .
(40)
Rearranging the above equation we get
n+1 1—2n?
S(XY) = e(n = 1)om=9(X,Y) + (n = 1) o—n(X)n(Y) (41)

Thus the result follows.

6 e- Kenmotsu manifold satisfying R(¢, X).W,"—
W (€, X).R = 0 and R(&, X). Wy —Wy* (€, X).R =
LyQ(g, Wy") conditions

Theorem 6.1 An e-Kenmotsu manifold satisfying R(&, X).Wo*—Wy* (€, X).R =
0 condition represents an n-Finstein manifold.

Proof 6.1 Writing the terms R(&, X)Wy and Wy* (€, X).R = 0 explicitly, we
have

(R(EX).W07) (Y, 2)W = RE X)W’ (V, )W = Wy (RE XYV, 2W
—Wo* (Y, R(E X)Z)W — Wy (Y, Z)R(E, X)W,

and

(Wo™(&, X).R)(Y, 2)W = Wo'(§, X)R(Y, Z)W — R(Wo™ (€, X)Y, Z)W
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By making use of equations (9) and (1), (42) takes the form
(R(E X).W0") (Y, )W = ~R(Y, Z)Xn(W) = S(ZW)n(Y)X + (¥, W)n(@2)X

(X, W)R(Y, 2)& — o eq(X, W)S(Z,E)Y + o_eq(X. W)g(Y, )QZ +n(¥)R(X, Z)W
+%nm5(z, W)X — %Q(X, Wn(Y)QZ + eg(X, Y R(E, Z)W + %EQ(X, Y)S(Z, W)e
e g(X,V)g(E W)QZ + n(Z)R(Y, X)W + - S(X, W)n(Z)Y — _g(¥, W)n(Z2)QX

+eg(X, Z)RIY, W + eg(X, 2)S(6, W)Y = 5-eq(X, Z)g(Y, W)QE + n(W)R(Y, 2)X

+5on(W)S(Z,X)Y = 5n(W)g(Y, X)QZ + eg(X, W)R(Y, Z)¢ + 5 -eg(X, W)S(Z, €)Y

5 eg(X, W )g(Y, Q7.
(44)
Similarly (43) takes the form
(Wo™(§, X).R)(Y, Z)W = —R(Y, 2)Xn(W) — en(Y) Zg(X, W) + en(2)Y g(X, W)

oY) ZS(X,€) = Son(Z)Y S(X,€) — oo RY, 2)QXg(6, W) + (Y )R(X, Z)W

L,
—eg(X,Y)(V)Z = g(X,V)g(Z, W)€ + 5-S(X, V)W) Z + --eS(X, Y )g(Z, W)

+5og(6 VIRQX, Z)W +n(Z)R(Y, X)W -+ eg(X, Zpn(IV)Y + (X, Z)g(V, W)

—%S(X, Zm(W)Y + %S(X, Z)eg(Y, W)€ + %g(ﬁ, Z)R(Y, QX)W + n(W)R(Y, Z)X

+en(Y)g(X,W)Z — eg( X, Wn(2)Y — %S(X, Win(Y)Z + %S(X, Win(2)Y
g€ W)R(Y, 2)QX
(45)

By taking inner product with £ for the equations (44) and(45), using the con-
dition R(&, X).Wy* — Wo* (&, X).R =0 and replacing Y =W = &, we obtain

(n—1) (n—1)

—9(2,X) + ——en(X)n(Z) + en(X)n(Z) — 9(X. Z) + ———en(X)n(Z)
en(X)n(Z) + %S(X, Z) =0,
(46)

which on simplification gives,

S(X,7Z) =4neg(X,Z) — 2(n+ 1)n(X)n(Y). (47)
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Thus the result follows.

Theorem 6.2 An e¢-Kenmotsu manifold M with the condition R(£, X).Wy* —
Wo* (&, X).R = LyQ(g, Wo") is ann-Einstein manifold if Ly = 0 or, R(§, X). W™ —
Wo* (&, X).R = —Q(g, Wy").
Proof 6.2 We now consider,
R(&, X).Wo™ — Wo" (€, X).R = LuQ(g, Wo") (48)
From previous theorem, it is noticed that the value for R(§, X).Wo*—Wy* (&, X).R
is given by equation (47), now we find the value for LyQ(g, Wo").
LyQ(g. Wo") = Lu[(E N X)Wo™ (Y, Z)W — Wo" ((E A X)Y, Z)W
—Wo (Y, (EAX)Z)W = Wo™ (Y, Z)(§ A X)W]

By making use of equations (18) and (1) in previous equation, we obtain

(49)

La@9. W) = L[~ RIE Z)Wg(X,Y) — 3 S(Z,W)g(X, V)¢

506 W)g(X,Y)QZ + g(6, YIR(X, Z)W + 5-S(Z,W)g(€, V)X
— 500X W96, Y)QZ — (X, Z)R(Y, W = S_g(X, )S(E W)Y (50)

o0V W)g(X, Z2)QE + ROV, X)Wg(€, ) + - S(X, W)g(E, 2)Y

—5-glY, W)g(€, Z)QX).

Using equation (2) and (9), the above equation becomes
* 1
LyuQ(g: Wo™) = Lu[n(W)Zg(X,Y) + e9(Z, W)Eg(X,Y) — 5-5(2, W)g(X, Y)¢

boen(IV)g(X,Y)QZ + en(Y)R(X, Z)IV + o-en(Y)S(Z, W)X — en(Y)g(X, W)QZ

2 2
—n(W)g(X, 2)Y — eg(Y, W)Eg(X, Z) + —(ng_nl)n(W)g(X, 2y - ;1)

eg(Y,W)g(X, Z)¢§

1 1
(51)
Taking inner product with &, and replacing Y =W =&, we get
Ly@Q(g, Wo') = [2€9(X, Z) + (2 — e)n(Z)n(X)] (52)
From (47) and (52), (48) becomes

S(X, Z)—4neg(X, Z)+2(n+1)n(X)n(2) = La[—-2eg(X, Z)+(2—€)?7(Z)?7(f()])-
53

On simplification the above equation reduces to

S(X,Z)=(1—-Ly)22n+1)eg(X,Z) — 2n+ e)n(X)n(2)). (54)
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7 Example

We consider 5-dimensional manifold {M = (z1,22,y1,v2,2) € R°} where
(71, T2, Y1, Y0, 2) are the standard co-ordinates in R5. Let ey, eq, €3, 4,65 be
the vector fields on M given by

er = eza%l, €y = 628%2, es = —ezaiyl, ey = —ez%, es = —ez%,
which are linearly independent forming a basis of 1), M.

Let g be a semi- Riemannian metric on M defined as

0, ifi#j,
g(ei,ej) = { e . (55)
e, ifi=j5=>5.

Set e5 = £. Let 7 be a 1-form on M defined by n(X) = eg(X, e5) = eg(X,€)
for all X € x(M).
Also, we define (1,1)-tensor ¢ as

ple1) = ez, Plea) = —€er,  @les) = ees, P(eq) = —ee3,  Ples) = 0.
In consequence of the above equations, the linearity property of ¢ and ¢ yields
P*X = —X +n(X)E, g(¢X,0Y) = g(X,Y) —en(X)n(Y), VX, Y € x(M).

The above relations imply that the structure (¢, &, 7, g, €) defines an indefinite
almost contact structure on M.
Now by direct computations, we obtain

ler,e1] =0, e, ea] =0, [er,es] =0, [er,eq] =0, [eq,e5] = eeq,

lea,e1] =0,  [ea,e2] =0, [ea,e3] =0, [eg,eq] =0, [e2,e5] = €e,

les,e1] =0,  les,ea] =0, [es,es] =0, [es,eq] =0, [es,e5] = ees,

leg, 1) =0, [eq,ea] =0, [eq,e3] =0, [eq,eq] =0, [eq,e5] = eey,

les, e1] = —€eq,  es,ea] = —€eq,  [es,e3] = —ees, [es, eq] = —eey,
[e5, €5] =

By making use of Koszul’s formula, we can easily calculate

Ve, e = —€ee5, Ve =0, Ve =0, Ve =0, Ve =0,
Veer =0, Ve =—ees, Veea=0, Vg,ea=0, Ve =0,
Veleg = O, V€2€3 = O, V€3€3 = —€e€;5, ve4€3 = O, Ve5€3 = O,
V61€4 = 0, V62€4 = O, V63€4 = O, V64€4 = —€ej5, Ve5e4 = 0,

Ve es =€er, Vee5 =c¢€ca, V.es=ce3, Ve;=c¢ceq, Ve;=0.
Also, from the above relations we can verify that

Vxé=e(X —n(X)E) and (Vxo)Y = —g(X,9Y)E —en(Y)opX.
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Therefore the manifold M (¢, &, 1, g) represents an e-kenmotsu manifold.
Now we calculate Riemann curvature tensor from the well known formula

R(X,Y)Z =V xVyZ —VyVxZ — Vxy]Z which can be obtained as follows.

R(e1,ex)es = —eq, R(eq,e3)es = —eq, R(ey, eq)eq = —eq, R(eq, e5)es = —eq,
R(eg, e1)e; = —eg, R(ea, e3)e3 = —eq, R(eg, e4)eqs = —ea, R(eq, e5)es = —ea,
Rles, e1)er = —es, R(es, ex)eq = —es, R(es, eq)eqs = —es, R(es, es)es = —es,
R(€47€1)61 = —€4, R(€4,€2)€2 = —éey4, R(e4,63)e3 = —64,R(e4, 65)65 = —ey,
R(es,e1)e; = —es, R(es, ea)ea = —es, R(es, e3)es = —es, R(es, e4)eq = —es,

From the above values the Ricci tensor can be calculated as follows,

S<€15 61) = _47 5(62762) = _47 8(63763) = _47
S(eq,eq) = —4, S(es, e5) = —4, which verifies Theorem|[3.2].

8 Open Problem

In this paper we have found Wj*- curvature tensor on e-Kenmotsu manifold.
Further the charecterizations can be done by using other forms of curvature
tensors where the results will be analysed differently.

References

[1] D. E. Blair., Contact manifolds in Riemannian geometry, Lecture Notes
in Mathematics 509, Springer- Verlag Berlin-New York, (1976).

[2] U.C. De., A., Sarkar, On e-Kenmotsu manifolds, Hardonic J 32(2),(2009)
231-242.

[3] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., 49,134~
145,1990.

[4] A. Haseeb., Some results on projective curvature tensor in an e-Kenmotsu
manifold, Palestine J. Math. 6(Special Issue:II),(2017), 196-203.

[5] A. Haseeb.,M. A. Khan., M. D. Siddiqi., Some more results on an e-
Kenmotsu manifold with a semi-symmetric metric connection. Acta Math.
Univ. Comenianae 85(2016), 9-20.

[6] K. Kenmotsu ., A class of almost contact Riemannian manifold. Tohoku
Math. J. 24(1972), 93-103.

[7] K. Matsumoto ., S. lanus ., Ion Mihai. On P-Saskian manifolds which
admit certain tensor fields. Publ. Math. Debrecen. 1986;33:61-65.



Wy*- Curvature Tensor Characterizations on e- Kenmotsu Metric Space. 43

8]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

S. K. Moindi, B. M. Nzimbi, Study of Wj-Curvature tensor in Para-
Kenmotsu manifolds, Int. journal of Mathematics Trends and Technology.
Vol (68)(11)(2022), 73-78.

R. N. Singh ., S. K. Pandey., G. Pandey., K. Tiwari ., On a semi-symmetric
metric connection in an e-Kenmotsu manifold. Commun. Korean Math.
Soc. 29(2014), 331 343.

K. L. Sai Prasad, S. Sunitha Devi and G. V. S. R. Deekshitulu, Study
on a class of P- Kenmotsu manifolds admitting Weyl-projective Curva-
ture tensor of type (1,3), Recent advances in Mathematical Research and
Computer Science, Vol.(1). DOI:10.9734/bpi/ramrcs/v1/4441F.

D. G. Prakash, M. R. Amruthalakshmi, F. Mofarreh and
A. Haseeb, Generalized Lorentzian Sasakian-Space-Forms with
M-Projective  curvature  tensor, Mathematics, 10(2022),2869.
https://doi.org/10.3390/math10162869.

G. P. Pokhariyal and R. S. Mishra, “Curvature Tensors and Their Rela-
tivistic Significance II,” Yokohama Mathematical Journal, vol.19, no. 2,
pp- 97-103, 1971.

G. P. Pokhariyal, “Curvature Tensors in a Lorentzian Para-Sasakian Man-
ifold,” Quaestiones Math, vol. 19, no. 12 , pp. 129-136, 1996.

G.P. Singh, Rajan, A. K. Mishra and P. Prajapati, Wg- Curvature
tensor in generalized Sasakian- space- forms, Ratio Mathematica, Vol.
(48)(2023).

K. L. Sai Prasad, S. Sunitha Devi and G. V. S. R. Deekshitulu, Study
on a class of P- Kenmotsu manifolds admitting Weyl-projective Curva-
ture tensor of type (1, 3), Recent advances in Mathematical Research and
Computer Science, Vol.(1). DOI:10.9734/bpi/ramrcs/v1/4441F.

Takashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohuku
Math.J.,Second Series, 21(1969), 271-290.

P. Uygun, S. Dirik and M.Atceken, Some curvature Characterizations on
Kenmotsu Metric Spaces, Gulf Journal of mathematics, Vol. 13(2)(2022),
78-86.

Venkatesha, Vishnuvardhana, S. V., e-Kenmotsu manifolds admitting a
semisymmetric metric connection. Italian J. Pure Appl Math. 38(2017),
615623 .

X. Xu, X. Chao, Two theorems on e-sasakian manifolds, inter-
net.J.Math.Sci. 21(2)(1998), 249-254.



