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Abstract

In this paper we introduce Poisson Fibonacci binomial q-
Pascal matriz of triple difference operator FR of fractional
order o by the composition of poisson Fibonacci binomial q-
Pascal matriz F and difference operator A of fractional or-
der o defined by

o N NCNSN gyt Lo+ DI+ DIy +1)
(A wmnk)—ZZZ(_l) o ulvlw! o —u+ HIB—v+ DIy —w+1)

u=0 v=0 w=0

and introduce sequence spaces ly, ,  p(A%) and I7° . -(A%). We
present some topological properties, obtain Schauder basis and
determine a-, -, and y-duals of the spaces [3.(A%) and lgO’F(Aa).

Keywords: Poisson, Fibonacci binomial, q-Pascal matriz, triple sequence,
difference operator A“, schauder basis, a-, B-, and y-duals.
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1 Introduction

The double sequence was introduced and investigated initial by Priya
et al.[7, 9, 13], Subramanian et al.[8, 10, 11, 12] and many others. A Triple
sequence (real or complex) can be defined as a function X : NxNxN — R(C),
where N, R, C denote the set of natural numbers, real numbers, and complex
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numbers, respectively. The different types of notions of triple sequences were
introduced and investigated at the initial by Esi et al.[6], Subramanian et
al.[3, 5], Hazarika et al.[4] and many others.

Throughout N = {0,1,2,3,...} and w? is the space of all real-valued
sequences. Any linear subspace of w?® is called sequence space. The set
of all (m,n, k)™ summable sequences (Zmr) bounded sequences (I ), are
few examples of classical sequence spaces. The space of all convergent se-
ries and bounded series shall be denoted by (cs?),, ., and (bs®), ., respec-
tively. A Banach space X is said to be a BK- space if it has continuous

coordinates. The triple sequence spaces (l,u,x) is a BK-space under the norm
1

e P— <Z;’§’:0 DD PN |xmnk|m+n+k> " Here and in the entire pa-

per 1 < m,n,k < oo unless stated otherwise. Moreover the triple sequence
spaces (I ;) is a BK-space under the same norm ||z|,.c = sup,, ,, xen [Zmnk|-
Let X and Y be two triple sequence spaces and A = (amﬁf) be a three
dimensional infinite matrix of real entries. We write A,,,x to denote the se-
quence in [m, n, k|*® section of the matrix A. We say that the matrix A defines

a mapping from X to Y if Az isin Y for every x in X, where

is called A-Transform of the sequence © = (Z,,,x) provided that the series
Y o D Ak k, exists for each u,v,w € N. The notation (X,Y)
denote the family of all matrices that map from X to Y. The sequence space
X 4 defined by

Xa={reuw’: Az e X} (1.1)

is called the domain of matrix A in the space X. The Poisson matrix is defined
by A=TQI+1IXT.

4 -1 0 100
Example 1.1 If T=|—-1 4 —1| and I = |0 1 0| then
0o -1 4 001
T+21 -1 0
A=TRI+IxT= - T+2 —I

0 -1 T+42I

Properties of poisson matrix of eigenvalues and eigenvectors of A = T ®
I+1®T:

1. We have Az, = Az, for j,k=1,2,3,...,m.

2. The eigenvectors are orthogonal.
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3. A is symmetric.

4. A is is positive definite.

Example 1.2 A = [ 21 _01} ® [1 0] + [1 O] ®

—~ 010 1] |-1 0
4 -1 -1 o] 1 1
-1o4 0 -1,

-1 0 4 —1| |1~ "]

0 -1 -1 4] [1 1

4 -1 -1 0][1 1
-1 4 0 11|, It
—1 0 4 —1|]|-1 ~1
0 -1 —1 4] [-1 ~1

and so on.

The g-analog of a mathematical expression means the generalization of
that expression using the parameter q. The generalized expression returns
the original expression when ¢ approaches 1. The study of g-calculus dates
back to the time of Euler. It is a wide and an interesting area of research in
recent times. Several researchers are engaged in the field of g-calculus due to
its vast applications in mathematics, physics, and engineering sciences. In the
field of mathematics, it is widely used by researchers in approximation theory,
combinatorics, hypergeometric functions, operator theory, special functions,
quantum algebras, etc.

Let 0 < ¢ < 1. Then the g-number r(q) is defined by

S S S gttt st =1,2,3, ..
r(q) =
0 r,s,t=0.

one can notice that r(q) = r whenever ¢ — 1. The g-analog (;)q(ﬁ)q(z)q of
the binomial coefficient ( )q(“)q(;’:)q is defined by

u
m n

u(q)'v(q)!w(q)!
(f)(f)(w> _ [t et @ wSmn Sk <w
mj,\n/, k q 0 m>u,n>uv,k>w

where g-factorial u(q)! of u, v(g)! of v, and w(q)! of w is given by
u(@)! = u(g)(u=1)(q)---2(¢)1(q)

v(g)! =v(g)(v —1)(q)---2(q)1(q)
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w(q)! = w(g)(w—1)(q) - 2(q)1(q)

h (0.-(0).-().-
0.-().- (),
(0.~ ()~ (),

Further (ufm)q = (”)q; (U n)q = (n), (w k) (k) which is a natural g-analog

m

of its ordinary version (ui‘m) (Ufn) (wqf k) = (:@) (:’L) ( k) The triple Pascal matrix
in- fact is an infinite matrix composed of the binomial coefficients in its entries.
To accomplish this goal, there exist three various ways, namely using a lower-
triangular, upper-triangular or a symmetric matrix. The 4 x 4 truncation of

those are shown below. The triple upper triangular is

11 1 1

0 1 27 96
=10 0 1 500

00 0 1

Triple lower triangular is

1 0 0 O

11 0 0
Li=11 97 1 o)

1 96 500 1

symmetric:

1 1 1 1

1 27 500 8575
1 96 3375 87808
1 250 15435 592704

Ay =

one can see the pleasing relationship A, = L,U, between those matrices one
can also easily observe that all of those three matrices have a value of 1 as their
determinants. The elements of the symmetric triple Pascal matrix consist of
binomial coefficients, that is,

Ao <m> (n) (Z) B mwri m) n!(nS!— )l k!(kt!— )
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where r,s,t =i+j+kand m =1i,n = j,k =t. In otherwords A;;;, =i+ j+F,

Cijk = “jjf;’f)‘ Thus the trace of A, is given by

r—1 s—1 t—1

2m! 2n! 2kl
A= 30303 Gt Cal

— (m!1)2 (n!)2 (k)

with the first few terms are given by the sequence 1, 27,729, 24389, .. ..
Let 0 < ¢ < 1. Then the g-analog of P(q) = [P,ﬁfk]q of Pascal matrix is
defined by

(n), ), (), H0<m<r0<n<s 0<k<t
0 itm>rn>s k>t

P(q) = [P;;frfk] _{

and the inverse of ¢g-analog Pascal matrix is given by

P(q) = [Pr]”

m

B {(_1)(r—m)+(s—n)+(t—k) (;)q(S) (t) fo<m<r0<n<s0<k<t

n/q\k/q
0 ifm>rn>s k>t

Then ¢-Pascal matrix P(q) can be expressed in the explicit form as
0, @, G, 0 0 - (),
PO=16, 6, 6, 0, 0, 0, 0

clearly the g-Pascal matrix P[q] reduces to P when ¢ approaches 1. Also we ob-
serve that the sum of the elements of [rst]™ section is
S o oS0 [PrL]T = Gralq), where Grg(q) is called [r, s, ¢]™ section
Galois number. The Galois number plays significant role in determining the
number of subspaces of a finite field. Fibonacci numbers are one of the most
beautiful creations of nature. They are often known as nature’s number and
can be found everywhere around us, from the leaf arrangements in plants, to
the pattern of the florest of flowers, the bracts of pinecones or the scale of pine
apples. The sequence of integers 1,1,2,3,5,8,..., is known as the Fibonacci
sequence.

We define the poisson Fibonacci binomial g-Pascal matrix F' = ( l’%‘k Do k=15
which differs from the existing poisson Fibonacci binomial Pascal matrix by
using Fibonacci numbers f;;, and introducing some new triple sequence space
of I and A3. Now we define the poisson Fibonacci binomial ¢g-Pascal matrix
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rs __ 7S
AV = AU, nk Where

b = bﬁ)w,mnk
fﬁ;nk ((5+7ﬂ)1];.+1)+w> (;)q(fl)q(z)q lf 0 S m S U, O S n S U’
_ G(u=m)(v—n)+(w—k) 0<k<w
0 ifm>un>vk>w

The Gamma function I'(n) of a real number n ¢ {0,—1,—2,...}. I'(n) can be
expressed as an improper integral given by I'(n) can be expressed as ['(n) =

fooo e Ta" L dx, we state some properties of the Gamma function which are
used throughout the text

1. Forne N, T'(n+1) =nl
2. For any real number n ¢ {0,—1,—-2,...}, I'(n + 1) = nl'(n).
3. For particular cases, we have I'(1) =I'(2) = 1,I'(3) = 2!;I'(4) = 3L
The triple difference sequence space is defined as
Apink = Tomnk — Tmant 1k — Tmnk+1 T Tomnt L+l — Tmtlnkt

Tm+1,n+1,k + Tm+1,nk+1 — Tm4+1,n+1,k+1

and A°Zk = (Tmnk) and also the generalized difference triple notion has the
following binomial representation

m n k
A" Tk = Z Z Z(—l)”ﬂk (T) (;l) (];) Tmtintjk+q-

Now, we define the poisson Fibonacci binomial ¢-Pascal matrix Ab™ and
the fractional difference operator A the product matrix

A (bTS(A(Oé)))q = A (be}w,mnkA(a))q 9
where

( va,w,m,n,k’ (A(a) ) ) q

DD B it f”}nk Gy ()T a0 <m <,
(:1) (Z) (w)qs(u—m)+(v—n)+(w—k)rm+n+k 0<n<u,
e+ DP(B+DI(y+1) 1 0<k<w
— (u—m)!+(v—n)!+(w—k)! T (a—u+m+1)I(B—v+n+1)T'(y—w+k+1) - =
0 ifm>wu,n>w,
\ kE>w
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where 7,5 > 0, we define the poisson Fibonacci binomial ¢-Pascal matrix of
triple sequence spaces of the difference operator of fractional

(AW A@)), 0= {2 = @) €07 AWHAD)) 2T},
(A (B A, 0 = {x = () € W A (V(A)) z € A3} ,
(A (B A@)), 0 = {x = (i) € W* - A(I*(A)) z € 13} ,
(A Ay, = {o = (wp) € * A ((A), z € 12}
We redefine spaces
r (A(bmA(a))q) - (Fg)A(b“A(a))
A (AW A)g) = (A) 4 prancey a
r (A(bTSA(a))q) - (ZS)A(stA(a>) q
B (AQRA)g) = (15) s aten a (12)

2 Main Result

Theorem 2.1 If I'® is a complete metric space, then T3(Ab™*(A®),) is also
a complete metric space with the metric

d(x,y) = sup {|Abrs(A(a))qunk — Abrs(A(a))qymnk‘ cm,n,k=1,2,3,... }F3
Proof. It is obvious. m
Theorem 2.2 T3(Ab$(A@),) ~ T3

Proof. Define the mapping 7 : F?’(Ab”(A(O‘))q) —I3byrr=y= Ab?“S(A(a))qz
for all z € T3(Ab*(A®),) clearly 7 is linear and one-one. Let y = (Yap.) be
any triple sequence in I and & = (x,,,x) defined by then y € '3, we have

: s AQ)Y o FTRTE e (u (V) (W fank
lim Ab (A( )eZ i _u,vl,ggoozzz(m)q(n)q(k>q f

U,V W—00
m=0 n=0 k=0

i 1
Z m(_l)(mfa)Jr(nfb)Jr(kfc)
a=0 b=0 c=0 <S + T)

L) (m) | (n) q (k) qya;m] sk D@+ DT+ DTy +1)

a b) \c/) ~e (u—m)!(v—n)l(w—Ek)!

1
= 1 wow = 0
Na—u+m+1D)IE—-—v+n+)I'(y—w+k+1) wosoe
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and the mapping

Thus, we realize that z is a sequence in T'*(A b’"s(A M)
~T3 =

7 is onto and metric preserving. Hence I'3(Ab™(A®),)

Theorem 2.3 For every fized A € N, define the sequence b°(q) = (ban) (q))
of the elements of the space T3(Ab*(A®),) by

(—1) e m+e=m+=R () i < un <ok <w

(b(A)(q)) — (::L)q(fL)q(izg)q

0 ifm>un>uvk>w
Then the following statements hold:

(a) The set {b(q),bM(q),...} forms the basis for the space T3(Abs(A®),)
and every x € T3(Ab™*(A®),) has a unique representation

o o oo
_ +n+k S
z = Ui 0 (q).
m=0 n=0 k=0

Theorem 2.4 The sequence spaces I (Ab"*(A@),) and 13, (A" (A®),) are
BK- spaces with the norms defined by

el sy = [[A8(A@)ga], = (Z Sy \Ab“(AW') 21)

m=0 n=0 k=0

and
2], (aprs(atery,) = [JADS(A) || = sup |Ab™(A)

m,n,keEN

respectively.

Proof. The spaces [? and [2, are BK spaces with their natural norms. Since
equation (1.2) holds and by Theorem 4.3.12 of Wilansky [1] we get that
13 (Ab(A@),) and 13, (Ab™(A®),) are BK- spaces. This completes the
proof. m

Lemma 2.5 The inverse of the product matriz Ab™(A®), is given by
(AH(A©),)

( Zz u Z] v Zt w(u + m) (i+j+t)(_1)(m7i)+(nfj)+(k7t) ZfO S U S m,
(u)q(v)q<’“) g(m=)+(n—j)+(u—t) .—(i+j+t) 0<v<n,

FZU*O‘+1)'F(*,3+1)'F(*’Y+1)

(m—0)(n—j)1(k—t)! 0<w<k
- L fighe
T(—a—m+i+ )T (=f—ntj+ )T (—y—k+t+1) f

0 if u>m,v >n,
\ w >k
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Theorem 2.6 The sequence spaces I (Ab"*(A@),) and 13, (A" (A®),) are
linearly isomorphic to [3and I3 .

Proof. Define the mapping T : I3 (AbTS(A(a))q) = l3byxr —y="Tx =
Ab(A@) 2 clearly T is linear and x = 0 whenever Tz = 0. Thus T is
injective. Let ¥ = (Ymni) € [ and by using Lemma 2.5, we define the sequence
T = (Tynk) by

. ¢ - —(uTrvT+w m—u n—v —w m n k
e = 37 37 S (A )b (e ><u) U) (w)
q

m=0 n=0 k=0

G(m=w)+(n—v)+(k=w) .~ (m-+n+k) fonk T(—a+ D=+ DI'(—y + 1
f (m —u)!l(n —v)l(k — w)!

1
I'(—a—m—u+1)I(=f—n—v+1)I'(—y—k—w+1)

yuvwv u7v7w 6 N'
Then

||$||z§,mk(Abrs(A<a>))q
= ]| Ab™ (A s
ufm)Jr(vfn)Jr(wfk)r(ernJrk) fmnk F(O( + ]')F(B + 1)F(’7 + ]')
f (u—m)l(v—n)(w—k)!
) 1/k
|xmnk|k
I'(—a—u+m+DI(-f—v+n+ I (—y—w+k+1)
(3 St

m=0 n=0 k=0

:S(

x|

=llylls < o0

Thus z € I3 (Ab"s(A(a))q) and T is norm preserving. Consequently, T is sur-

jective. Thus I3(Ab™(A®),) = [3. Similar proof can be given for the case
(A (AW),). w

3 Schauder Basis

In this section we construct the schauder basis for the sequence space
B(Ab*(A®),). A sequence z = (k) of a normed space (X, || - ) is called
a schauder basis for the space X if every element u € X there exists a unique se-

quence of scalars (@) such that limy, , oo [[U =Y 0 >0 S0 o Gk Tk ||
= 0.
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Define the sequence b® = (b,(ﬂs)q) for every fixed r,s € N by

(—1)m+em k(2 () o< m < w0 <n <o,
b (q) = (4),(0,0),  0<k<w
0 itm>u,n>uvk>w

for each r, s € N. Then the following statement holds.

Theorem 3.1 The set {b%(q),bM(q),...} forms the basis for the space
P(AYS(A®),) and every x € PB(AV*(A®),) has a unique representation
zo= ) S S o Ak (@) where A = (AVS(A) ) for each
m,n,k € N.

Proof. It is clear from the definitions Ab™(A®), of that Ab*(A®), =
ekl e (13 ). The set {el™* : m n k € N} forms the Schauder basis
for the space (I%). Since the mapping T defined by z + y = Tz (see Theorem
2.6) from the space I* (46" (A®),) to I3, is a linear bijection, therefore the

inverse image of the set {e™"*} forms the basis of I* (Ab"*(A(®),) that is

=0, x€l® (A (A“),).

S Ad(g)

m=0 n=0 k=0

lim
ULV, W—00

To verify the uniqueness of the representation, we assume that
T = Zm Zn Zk ankb(s) then, we have

oo 0 o0

(A (D)) e = 22 D0 D o (AV(A))

which is a contradiction to our assumption that \,,x = (Ab”(A(a))q)mnk for
each m,n,k € N. m

Corollary 3.2 The sequence space [3 (AbTS(A(a))q) 1s separable.

Proof. The result is immediate from Theorem 2.4 and 3.1. =



66 C.Priya et al.

4 Kothe Duals

In this section, we determine Koéthe duals (-, -, v-duals) of the spaces
I3 (Abs(A®),) and 13 (Ab"*(Al®),), before proceeding we recall the defini-
tions of Kothe duals.

Definition 4.1 The Kithe Toeplitz duals or a-, 5-, and y-duals X*,X? X7 of
a sequence space X are defined by:

3

X = {u = (Upnt) € W°* 1 UT = (Ui Tnmk) € 12 for all x € X} :

XF = {u = (Upni) € W* 1 UT = (UpppiTromi) € €8°; for all x € X}
X7 = {u = (Upmnk) € W* 1 UT = (U Tnk) € bs®; for all x € X} , respectively.

The following lemma is essential to determine the dual spaces. Throughout the
paper, we denote the collection of all finite subsets of Ny by N .

Lemma 4.2 The following statements hold:
i) A= (amr¥) € (I*: %) if and only if

EEE[r e

meK neK keK

ii) A= (apr¥) € (x%: ¢) if and only if

uvw

(o olNe O lNe o

sup Z Z Z |a$’zf| < 0 (4.2)

wv,weNo 20 70 =0

F(amng) € C3: lim (am”k) = Qnk for each m,n, k € No.  (4.3)

uvw
UV, W—>00

iii) A= (alm¥) € (I : A3) if and only if (4.2) holds.

uvw

Theorem 4.3 The a-dual of the space I3 (Ab™*(A),) is the set 01(q) which
18 defined by
< oo} .

d1(q) = {z = (Zuow) € W :

oo 0o X

wp > DD

RENm 0 n=0 k=0

STSTS T (A (A®),) (zuww) T

ueR veR weR
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Proof. Consider the following equality

| u v w ., N L I
T T =3 S AYH(AD) (AQY) gy (Fuvw) T (Yans) T

m=0 n=0 k=0
for all u,v,w € Ny.

(4.4)
where the matrix A(q) = b (q) is defined by
(—1)(u=m)+(v=n)+(w=k) i0<m<u,
590 — () — 4 1 )0, e 0SS0k w
0 iftm>un>vk>w

for all u,v, w, m,n, k € N. We realize by using (4.4) that 22 = (2ypwTurw) € >
whenever z € I'® (Ab™*(A@),) if and only if A@(a)y €1* whenever y €
I'®. Thus we deduce that z = (zyu) is a sequence in the a-dual of I'* (Ab™*(A®),)
if and only if the matrix A@ (), belongs to the class (I'® : [3). Thus we con-
clude from (4.1) of Lemma 4.2 that [I'® (Ab’”s(A(a))q)}a =61(q). =

Theorem 4.4 Define the sets d2(q), 03(q), and d4(q) by

5 (g) = { () € 3030 (L))

u=m v=n w=~k

q(”;’”)+(“;”)+(”;’“) (Z)q(z)q(;g)qzw

exist for each m,n,k € NO}

ZZ 1)(t k)+(s—n)+(r—m)
q Zrst oo
2 2 2 J\1 \m/
_ _ 3.1 _1)\(r=m)+(s—n)+(t—k)
04 (q) = {z = (Zypw) € Wt u,vl,'lwrgoo Z Z (—1)

) (00,0 )

Then [I3 (Ab=(A®),)]” = 62(g) N 8s(q).

o
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Proof. Consider the following equality:

u v w 1
22D ) 7T

m=0 n=0 k=0

U v w m n k
= (_1)(r*m)+( —n)+(t=k)

)3 (G 0),0),0), st

Z (_ 1 ) (r—m)+(s—n)+(t—k)

() 2+ () (), 0,0, ] it
— (B(@) ¥ (45)

for each u, v, w € Ny, where the matrix B(q) = b"(q) is defined by

Do D Doy (— 1) TR if0<m<u0<n<uv,
r—m s—n t—k r s 1
brs _ (]( 2 )+( 2 )+( 2 )(m)q(n)q(ltc)q(zrst) r4s+tt 0 S k, S w,
(q) =
0 iftm>wu,n>uvk>w.

for all u,v,w,m,n,k € Ny.

Thus, using (4.5), we realize that 22 = (2ypwTuww) € cs>. Whenever x =
(Zuww) € T (Ab7*(A®),), if and only if B(q)y € ¢® whenever y = (ymnr) € I,
This yields that z = (z4) is a sequence in S-dual of I'* (Ab™*(A@),) if
and only if the matrix B(q) belongs to the class (I'® : ¢®). This in turn im-
plies by using (4.2) of Lemma 4.2 that sup, , wen, 2 omeo 2oneo 2neo 107°(@)] <
00 and limy , o b (g) exists for each m, n, k € Ny. Thus [I® (46" (A))]F =
52((]) N 53((]) |

5 Compact Operators and Hausdorff Measure
of non-Compactness (HMNC)

Let X and Y be two Banach spaces. By B(X,Y’) we denote the set of all
analytic linear operators from the space X into the space Y which is again a
Banach space equipped with the metric

d(L,0) = sup |Lz — Ly|

rEBx
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where L € B(X,Y) and Bx denotes the open ball in X. Further

[c ol olN¢ 9]

d(z,0)x = sup Z sznkﬂcmnk .

2€EX |1 20 n=0 k=0

In this case, we observe that © = () € X 8 provided that the supremum
exists. Now, we recall the definitions of compact operator and Hmnc of an
analytic set.

Definition 5.1 An operator L : X — Y 1is said to be compact if the domain
of L is all of X and for every analytic sequence (Tyww) in X, the sequence
(L(%ww)) has a convergent sub-sequence in'Y .

Definition 5.2 The Hmnc of an analytic set H in a metric space X is defined
by

X (H)=inf{(m=0,1,2,...,u),(n=0,1,2,...,0),(k=0,1,2,...,w),u,v,w € N}

S S T
n”fb;,:*'“,aggl’;*k) is the open ball center d at T, and of radius

Gmnk for each m = 0,1,2,...;u,n = 0,1,2,...,0,k = 0,1,2,...,w. The
compact operator and Hmnc are closely related. An operator L : X — Y
is compact if and only if d(L,0)x = 0 where d(L,0)x denotes Hmnc of the
operator L and is defined by d(L,0)x = x(L(Bx)). Using Hmnc, several au-
thors obtained the necessary and sufficient conditions for matrixz operators to
be compact between BK-spaces. If X and Y are any two BK-spaces, then ev-
ery matriz ® € (X,Y) defines a linear operator Ly € B(X,Y), where Lox =
bx for all v € X. Moreover, if X D o is a BK-space and ® € (X,Y), then
d(Lg,0) = d(®,0)(x,y) = SUDypwen, |Puvw * T — Puvwly|x < 00, where o repre-
sents the set of all sequences that terminate in zeros.

where, B <x

Lemma 5.3 Let X be a triple sequence space and ® = (a™*) be a three-

dimensional infinite matriz. If ® € I3 (AbS(A@),: X), then 0 € (I : X)
and Pz = Oy for all x € T? (Ab™*(A@),).

Proof. Let ® € I'® (AbTS(A(a))q : X) and z € T (Ab™(A@),). Then @y, =
(@m®) o mkeny € [ (Ab"s (A )q)}ﬂ for all u,v,w € Ny. Consider the follow-
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ing equality:

m+n+k
Huvw mnkYmnk

‘gy uow

WE
hE
hE

3
Il
=)
3
I
)
B
Il
=)

o0 o0
t—k

f: 3 (1) kg () (7))

r=m s=n t=k

q() = li 2% (0,6,

a=0 b=0 c=0

LY

3
]
o

pnqg
||M8

N
S s

Va)
N

q n

mnk m+n+k
uvw mnk
m=0 n=0 k=0

=(Px) yp for all u,v,w € Ny

Thus we realize that 6,,, is absolutely summable for each u,v,w € Ny and
0y € X. This yields the desired consequence § € (I'*: X). =

Theorem 5.4 The following statements hold:
(a) If @ € I (Ab*(Al),),T3) then

oo 0 oo

d<L¢.7 O) - uvlqjjriloo Sup Z Z Z |9(uvw),(mnk) m .

m=0 n=0 k=0

(b) If ® € I'® (Ab(A®), : ¢3) then

[c.olNe olNe 9]

1 1
5 uvltiriloo sSup Z Z Z ‘e(uvw),(mnk) - 9‘ m+1n+k < d(Lq;, O)X

m=0 n=0 k=0
o oo 00

= uvlt}zrgoo Sup Z Z Z le(uvw (mnk) 9’ m+n+k

m=0 n=0 k=0

where 0 = (Opnik) and Ompie = liMyyw— o0 Owow), (mnk) for each m,n, k € Ny.

(c) If © € I? (Ab"s(A@), : A%) then

0<d(Lo,0) < Jim supd > >, [

m=0 n=0 k=0
(d) If @ € T (A (A®), : %) then

[m,n,k]
myll}ﬁrgoo[d(fb 0)] P8 (Abro(Ae))5) = < d(Ls,0)x

. [m.n,k]
S 4 mi}cgoo[d(q)7 0)]F3<Abrs(A(a>)q:l3)’
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where
i 0o 00 00 m
[d(®, 0)][;;17(725,15@(@ = sup Z Z Z Z Z Z Ousvnw,mnk
RERmnk 1 —0 n=0 k=0 |ueR veR weR
(€) If ® € I'® (A" (A®), : ¢sd), then
o oo o u v w m
d(L@, O)X = lim sup Z Z Z Z erst,mnk
uow=reo m=0n=0 k=0 | r s=0 t=0
(£) If ® € I3 (Ab"s(A@), : cs*) then
1
1 o0 (o) o0 u v w 5 m+n-+k
— lim sup Z Z Z Z erst,mnk 0 d(L¢’7 O)
2 wow—oo m=0 n=0 k=0 | r=0 s=0 t=0
u v w m+1t+k

where, 0 = (émnk) with 0,1 = liMypw oo Y0 e Dt Orstomnie for
each m,n, k € Ny.

(g) If ® € I'® (Ab™*(A), : bs®) then

1
o0 oo oo m+n-+k

0<d(Le,0) < lim sup (D D "

m=0 n=0 k=0

u v

w
E Hrst,mnk

r=0 s=0 t=0

Proof.
(a) Let ® € I'® (Abm*(A®), : I'*). We observe that
d(q)uvun O)FS (AbTS(A<a))q) = d<9uvw7 0)F3 = d(euvwa O)l5

oo 0 o0

1
|9(uvw),(mnk) | mintk - for u,v,w € Np.

Then d(L‘Pv O) - hmuvw—)oo sup (Z;O:O ZZO:O ZZO:O ‘e(uvw),(mnk) ‘ m)
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(b) Notice that
d(euvw ) = ( uow 9) O)l3

u v w
1
E 0w mnk — Omnk| ™77 for each u, v, w € |N|o.
m=

(5.1)

Now, let ® € I'* (467 (A®), : ¢*). Then Lemma 5.3 implies that 6 €
(I3 : ¢3), we deduce that

1 1
— lim sup |9uvw - 0|m S d(L'iI)a 0) S lim sup |9uvw 0|u+v+w

UVW—>00 UVW— 00
which yields the right of equation (5.1) that

[e.9] o0 o0
1

1
5 uvlliriloo sup Z:O Z% kz_% |9uvw,mnk - 9mnk|m+n+k S d(Lq;, O)X

: 1
< im0 3 35 s~ Bl
m=0 n=0 k=0
(c) The proof is analogous to that of part (a). So, we omit details.
(d) We have
u+v+w
D2 | =12 DD | =
ueR veER weR r3 ueR veER weR 13
2221222 D v (5:2)
m=0n=0 k=0 |[ucRveR weR

Let ® € T® (Ab"*(A®) : 13). Then Lemma 5.3 implies that § € (T : %)

we get
1
r4+s+t
lim su 0 ow <d(Lg,0
| s 1D DD (La,0)
uER vER weER T3
T
S 4- lim sup Z Z Z quw
P \ RERrst |4 Ch vek we Rt 3
which is reduced by using (5.2) to
[rst] . [rst]
pdim (@, O)F3(Ab”(A(“)) ) S d(Le,0)x < 4 lim d(Q, O)F?*(Ab”(M))q 9)

as desired.
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(e) Notice that

1
u v w s+t v v w
E E E (I)rst = E (I)rst
r=0 s=0 t=0 FS(Abrs(A(a))q) r=0 s=0 t=0 rs
u v w
= E E (I)Tst
r=0 s=0 t=0 13
1
U v m+n+k

which yields

d(LCI)’ O)X - u,vl,;lvngoo Sup (Z Z Z

m=0 n=0 k=0 [ r=0 s=0 t=0
(f) We have
1
u v w utotw v v w
E E E erst —0 = E E erst —0
r=0 s=0 t=0 T3 r=0 s=0 t=0 13
1
0o 00 00 u voow mEntk
- E § E E erst mnk ‘gmnk
m=0 n=0 k=0 | r=0 s=0 t=0

(5.3)

for each u,v,w € Ny. Let ® € I'* (Ab"*(A(®)), : ¢s*). Then by Lemma
5.3, implies that 6 € (', cs?), we deduce that

1 . u v w ~
5 u,vljunﬁl\oo Sup Z Z Z Orst — Orani < d(Lq)’ O>
r=0 s=0 t=0 3
u voow m
< i —
< o (DD fre =
r=0 s=0 t=0 I3
which yields that
1 oo 00 00 u v w m+n+k
ST 0353 31) 3 3 DU S S IEFTAN
m=0n=0 k=0 | r=0 s=0 t=0
oo oo 00 u v w m+1n+k
S u vliun—lwo sup Z Z Z Z erst,mnk emnk
m=0 n=0 k=0 | r=0 s=0 ¢t=0

as defined.
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(g) Since the proof is analogous to that of part (e),we omit the details.

]
Corollary 5.5 The following statements hold:
(a) Let ® € (I (Ab’"s(A(a)))q : T3). Then Lg is compact if and only if

[c ol o lNe 9]

mnk’mnk_
lim E E E‘@ww k= 0.
U,V,W—r00

m=0 n=0 k=0

(b) Let ® € (I'® (Ab”(A(a)))q : ¢). Then Lg is compact if and only if

[c. ol olNe o]

Jlim S S TN = G

m=0 n=0 k=0

1
m+n+k

= 0.

(c) Let ® € (T® (Ab”(A(a)))q : A3). Then Lg is compact if

[c ol olNe 9]

mnk ik — ()
lim E E E ‘wamn =
’lL’UUJ—}OO

m=0 n=0 k=0

(d) Let ® € (I'® (Ab”(A(a)))q : [3). Then Lg is compact if and only if
1
o) oo o0 m+n—+k
lim su =0.
a,b,c—o0 ReRp (ZZZ >

abe \m=0 n=0 k=0
(e) Let ® € (T (AbTS(A(“)))q : ¢s3). Then Lg is compact if and only if

2.2 O

u€ER veR weR

oo 0 oo

lim sup E
ULV, W—00

m=0 n=0 k=0

>3 S| ) -0
rst :

r=0 s=0 t=0

(f) Let ® € (I (AbTS(A(a)))q : ¢s?). Then Lg is compact if and only if

1
o m4n+k

oo oo
s (222

m=0 n=0 k=0

u v

S wt g

r=0 s=0 t=0

= 0.

(g) Let ® € (I (AbTS(A(a)))q : bs®). Then Lg is compact if

1
(o¢] o o m+n-+k

PP

m=0 n=0 k=0

u

2.2 D ot

r=0 s=0 t=0

= 0.
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6 Open Problem

In this study, we introduced Poisson Fibonacci binomial ¢-Pascal matrix of
triple difference operator F§ of fractional order av by the composition g-Pascal
matrix F' and difference operator A(® of fractional order a.Readers who are
interested in such triple sequence spaces can define the structures within the
defined sequence spaces in different sequence spaces and observe whether the
theorems given in the study are satisfied.
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